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To Jeanine

“..choisir le conseilleur, c'est encore
s’engager  soi-méme... vous étes libre,
choisissez, c’est—a—dire inventez. Aucune morale
générale ne peut vous indiquer ce qu’il y a a
faire; il n’y a pas de signe dans le monde. Les
catholiques répondront: mais il y a des signes.
Admettons-le; c’est moi-méme en tout cas qui

choisis le sens qu’ils ont.”

Jean-Paul Sartre, “L'existentialisme est un

humanisme”, pp. 46—47. Paris: Les Editions Nagel.
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1. INTRODUCTION

Principal Components Analysis (PCA) is a useful technique for the
exploratory analysis of quantitative variables. It yields optimal
representations of the variables and of the observation units (denoted as
“objects” here) simultaneously in a limited number of dimensions.

For the exploratory analysis of qualitative data it would be desirable to
have a similar method for optimally representing variables and objects
simultaneously. However, one cannot handle qualitative variables in the same
way as quantitative variables, because the “scores” on qualitative variables
have no numerical value.

Nevertheless, several techniques have been developed for PCA of data sets
in which some or all variables are qualitative. These techniques can be
distinguished in two types. In the first type the relation between two
qualitative variables or between a qualitative variable and a quantitative
variable is expressed by means of a coefficient of association. In order to
assess the association between such variables each variable is represented by
a so—called “quantification” matrix. Let n be the number of objects. Then such
a quantification matrix is an n» x n matrix containing for all pairs of objects
(including an object paired with itself) their similarity, based on the
variable concerned. For example, the similarity between two objects, based on
a qualitative variable, can be said to be 1 if the objects belong to the same
category of that variable, and 0 otherwise. Many other definitions of
similarity between objects are conceivable, and consequently many different
types of quantification matrices can be used. The main idea in the first type
of method is that the n” elements of each quantification matrix can be seen as
scores on a variable, and that hence PCA can be performed on such variables.
It can be shown that such a “PCA of quantification matrices” comes down to PCA
on a matrix of association coefficients between variables, just as ordinary
PCA can be seen as a PCA of the correlation matrix. Hence PCA of a set of such
quantification matrices considered as variables analyzes and represents the
association coefficients between the complete set of variables. However, it
does not yield coordinates for the objects, or the categories of the

variables. If one’s main interest is in the representation of the variables



and one does not need any information on how the relations between variables
are reflected in relations between objects and categories one might be
satisfied with this (first) type of method. In practice, however, this limited
amount of information is rarely satisfactory.

In contrast to the first type of techniques, the second type of
techniques for PCA of qualitative variables does provide a representation for
the objects and the categories. The best—known of such techniques is Multiple
Correspondence Analysis (MCA), developed independently by several authors,
e.g., Guttman (1941), Hayashi (1950), Benzécri et al. (1973), Nishisato (1980)
and Gifi (1981), under different names, see Tenenhaus and Young (1985). When
each qualitative variable is represented by means of a set of binary indicator
variables, indicating for each category whether an object belongs to it (1) or
not (0), then MCA can be formulated as PCA of the total set of these indicator
variables with respect to some predefined metrics. This implies that MCA in
fact performs a PCA on the matrix of (binary) scores of objects on all
categories of all variables. Therefore, MCA is directed at optimally
representing both the objects and the categories, but not necessarily the
variables. As is explained in section 6.1, MCA does optimally represent some
aspects of the variables, but does not take into account all the information
of the variables.

Both techniques discussed above have not only been proposed for PCA of
sets of merely qualitative variables. The techniques have been generalized to
handle mixtures of qualitative and quantitative variables as well. For PCA of
quantification matrices this generalization consists simply of defining
quantification matrices for both qualitative and quantitative variables, and
performing a PCA of these quantification matrices considered as variables. The
generalization of MCA that can be used for the analysis of mixtures of
qualitative and quantitative variables, called “PCAMIX” here, comes down to a
PCA of the total set of indicator variables for the qualitative variables
combined with the quantitative variables, as is explained in more detail in
section 7.1.

Above, two types of methods for the exploratory analysis of data sets
consisting (partly) of qualitative variables have been discussed. Both are
incomplete in that they lack either an optimal representation of the objects

(PCA of quantification matrices) or an optimal representation of the variables



(PCAMIX). A desirable property of a method seems to be that it optimally
represents relations between the variables in a low—dimensional space while at
the same time representing relations between object coordinates and
categories.

In the first part of this study, “Three-way methods applied to
quantification matrices”, methods are proposed that provide a compromise
between PCA of quantification matrices and PCAMIX. That is, these compromise
methods provide representations of both the objects and the variables. The
methods that are developed here involve the application of so—called three-way
methods to quantification matrices. Three-way methods are methods for the
simultaneous analysis of a number of data sets pertaining to the same
entities, for example, a number of similarity matrices giving similarities
between a set of objects, in a number of different instances. The idea of
applying three—way methods to a set of quantification matrices directly
follows what has been done (implicitly) by Saporta (1975, 1976), who first
proposed what has been called here PCA of quantification matrices. In fact his
method comes down to applying the three-way method STATIS-1 (see section
2.1) to a set of quantification matrices. Likewise, PCAMIX (and hence MCA)
can be seen as applying SUMPCA (see section 2.4) to a set of quantification
matrices. There are many other three—~way methods. In principle these can all
be used for the analysis of a set of qualitative data (D’Ambra & Marchetti,
1986; Coppi, 1986). This opens the possibility of generating as many
alternative techniques for the analysis of qualitative variables and mixes
of qualitative and quantitative variables as there are three-way methods.
Some of the three—way methods available are of special interest, because they
are related to each other in a very special way. In chapter 2, a number of
three-way methods will be discussed and it will be shown that these form a
hierarchy. Going down this hierarchy, the methods provide poorer
representations of the variables, while the model becomes increasingly simple.

As has been mentioned above, three-~way methods can be used to analyze
quantification matrices defined for the variables. In chapter 3, the concept
of a quantification matrix is explained and it is shown why quantification
matrices are useful. In addition, several different choices for quantification
matrices for qualitative and quantitative variables are reviewed.

Various three-way methods are available for analyzing a set of



quantification matrices, and many different choices can be made for the
quantification matrices. As a consequence, one is faced with a large number of
conceivable techniques. In order to facilitate the choice between several
techniques, a cross—classification of these is made in chapter 4. Apart from
showing which methods are conceivable by simply applying any of the three-way
methods to quantification matrices also certain existing methods are
identified as particular cases in the cross—classification. Finally, in
section 4.4, some guidelines are provided for choosing among the abundance of
available methods.

The second part of this study, “INDOQUAL and INDOMIX”, focuses on one of
the new methods discussed in part I. This method is INDORT (see section 2.3)
applied to one particular combination of quantification matrices for
qualitative and quantitative variables. First, the special case with only
qualitative variables will be discussed in chapter 5. This method is called
“INDOQUAL” (INDscal with Orthonormality constraints applied to quantification
matrices for QUALitative variables). INDOQUAL has some interesting properties,
that are similar to those of MCA. In addition, this new method can be
interpreted in a number of different ways that each clarify certain
differences and similarities between this method and MCA. These comparisons
are discussed in chapter 6.

In chapter 7 the more general method for the analysis of mixtures of
qualitative and quantitative variables, “INDOMIX” (INDscal with
Orthonormality constraints applied to quantification matrices for MIXed
variables), will be discussed. In chapter 8 INDOMIX is compared to a technique
for simple structure rotation of PCAMIX solutions. The latter has been
developed for the purpose of comparing PCAMIX and INDOMIX, and is hence
described in detail first. Next, it is shown that INDOMIX can be seen as a
method that also optimizes simple structure, and in fact does so to a greater
extent than the simple structure rotation techniques for PCAMIX do, albeit at
the cost of some inertia accounted for. Therefore, INDOMIX is not only
interesting as a method for mixtures of qualitative and quantitative variables
or merely qualitative variables, but also for the analysis of merely
quantitative variables.

In chapter 9 a simple algorithm is provided for INDOQUAL and INDOMIX.
This algorithm is a modification of an existing INDORT algorithm, and is much



simpler when the number of objects is large. This algorithm, and some variants
of it, only use derived quantities, based on category frequencies, bivariate
frequencies of pairs of categories from different variables, category means of
quantitative variables, and correlations between quantitative variables. It
follows that the method itself depends on these aggregate quantities only. As
a consequence, this algorithm allows for the analysis of a number of bivariate
contingency tables instead of the original data on the objects as well.

Finally, in the third part, “Analyses of empirical data”, experiences
with INDOQUAL and INDOMIX are reported in the form of applications to
empirical data sets. Most of the INDOQUAL and INDOMIX results are compared
with the results given by existing techniques. In this part, also some
attention is given to the stability of the solution of INDOQUAL and
INDOMIX analyses.






	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

