PART I

ANALYSES OF EMPIRICAL DATA






10. EXPERIENCES WITH INDOQUAL AND INDOMIX

The present chapter contains several example analyses. Each of the
examples have been chosen for a special purpose. The first example (section
10.2) deals with the classification of whales. As has been mentioned in
section 8.7, both Multiple Correspondence Analysis (MCA) and INDOQUAL can
be used as techniques for clustering objects on the basis of qualitative
variables, while INDOQUAL yields a slightly better solution. This first
example analysis has been treated in much detail, in order to demonstrate how
one can interpret the results from an INDOQUAL analysis. In addition, a
stability analysis has been performed on the MCA and INDOQUAL solutions
for this data set.

In the second example (section 10.3) the results of an enquiry reported
by Vegelius and Béckstrom (1981) are analyzed with the purpose of finding the
most important components underlying this enquiry. In this example, the
emphasis is on the variables. It is demonstrated, however, that focusing on
the variables only, as PCA of quantification matrices does, may be too
limited. The results from an INDOQUAL analysis, which considers the objects
and categories additionally, are discussed.

In section 10.4 an example is given of an INDOMIX analysis. The data
from a survey on abortion and related issues (described in Gifi, 1981) are
analyzed here. The analysis uses a special weighting option in order to
control for background variables. The variables are a mixture of variables
that can be considered as nominal and ordinal variables. The stability of the
solution is assessed by means of cross—validation.

The fourth example (section 10.5) describes the analysis of a set of
binary variables, reported by Van Zomeren and Van den Burg (1985). The
purpose of this analysis is, again, to find certain subscales or clusters of
variables. Some of the special possibilities of the analysis of binary
variables have been used.

In order to demonstrate to what extent standardizing the variables can
affect the INDOQUAL solution, the fifth example data set (section 10.6) has
been analyzed both after standardizing the variables, and without
standardizing the variables, the latter being the ordinary INDOQUAL

procedure. The data consists of two binary and five nominal variables with
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more than three categories. It appears that standardizing the variables
results in a domination of the solution by the binary variables.

The sixth example (section 10.7) has been taken up in order to compare
the results of an INDOQUAL solution with those of a TUCKALS-3 analysis of
quantification matrices, as proposed by Marchetti (1988). The data have been
analyzed by INDOQUAL with the same options as chosen by Marchetti (1988),
and it is shown that the results are very similar.

Finally, the seventh data set has been analyzed to give an example of
what may go wrong in blindly applying INDOQUAL to any data set of nominal
variables (section 10.8). It is shown that, because the variables in the data
set at hand (Sugiyama, 1975) do not form any clusters of closely related
variables at all, as can be verified by means of studying the generalized
correlations among them, each component of the INDOQUAL solution is
determined by one and only one variable. Obviously, such a solution is not at
all interesting from the point of view of data reduction.

As has been mentioned above, the stability of the solutions will be
considered in two cases. In the next section, the methods will be described by

means of which these aspects of the stability are assessed.
10.1. Assessing the stability of INDOQUAL and INDOMIX solutions

All methods for the multivariate analysis of qualitative and quantitative
variables described here are usually applied to samples from a population. In
principle, one attempts to find a description of the data that is valid for
the larger population from which the sample is drawn. Observations on the
complete population are rarely available. Hence it is important to know
whether or not the sample is representative for the population. One way of
determining this is to draw another sample. However, in practice this often is
not possible. In order yet to determine how sensitive the results of an
analysis are to the properties of the particular sample one may analyze the
stability of the solution over deletion of certain observations, or,
alternatively, one may cross—validate the results from one half of the sample
by means of the other half of the sample. These two methods will be discussed

briefly in sections 10.1.1, and 10.1.2, respectively.
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10.1.1. Stability over deletion of certain observations (jackknifing)

The first procedure for studying how much the results of an analysis
depend on the particular sample is based on alternatingly analyzing the data
with one object left out. This procedure is called the “jackknife” technique
(e.g., Miller, 1974), or simply “jackknifing”. In INDOMIX (and hence in
INDOQUAL) jackknifing will be done as follows. When the number of objects is
small, the data will be analyzed n times, with each object deleted once. Each
sample with one object deleted is called a jackknife. This procedure is called
“complete jackknifing”, because each object is eliminated once. When the
number of objects is large, “random jackknives” will be used. That is, a fixed
number of jackknives will be determined by leaving out one randomly
determined object each time. Next, the results of the analyses of the
different jackknives are compared to the results of the analysis of the
original sample and to each other, in order to assess the stability of the
original solution.

In both complete and random jackknifing one obtains a large number of
results of INDOMIX analyses on the different jackknives. The basic elements
of the jackknife solutions are the object scores and the loadings for the
variables. The object scores, however, cannot all be compared over the
different jackknife solutions, because in each jackknife solution partly
different sets of objects are used. On the other hand, the measures called
category centroids, which are based directly on the objects, can be compared
across all different jackknife solutions. All jackknife solutions contain
loadings and category centroids for the same variables and categories,
respectively.

The purpose of the jackknifing procedure used here is to determine to
what degree the separate jackknife solutions differ from each other and from
the original solution. Hence one has to compare a large number of loadings and
category centroids over all jackknives. As has been explained by De Leeuw and
Meulman (1986), comparing different jackknife solutions in multidimensional
scaling methods requires that the solutions be matched to each other, before
one can compare solutions. Because the INDORT solution yields unique axes,
such matchings are unnecessary for comparing results from different INDOMIX
analyses.

A useful way of comparing the loadings and category centroids (both
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denoted as “parameters” here) of different jackknife solutions with each other
seems to be to compute the means and standard deviations of the jackknife
parameters. The means over the jackknife studies can be compared with the
observed scores in the original study in order to see if the jackknife results
differ systematically from the original study. The standard deviations give
information on the stability of the parameters over the different jackknives.
The stability results provided here are by no means given for hypothesis
testing. They merely serve to indicate how stable the solution is as a whole,
and, specifically, how stable each of the individual parameters is.

The computation of an INDOMIX solution requires an iterative process,
which is rather time consuming. In the jackknifing procedure sketched above,
this procedure is to be repeated a number of times, that is, as many times as
there are objects to be deleted. In addition, each INDOMIX analysis should
be repeated a number of times in order to check whether or not the global
optimum has been found. All this would require large computation times.
However, the iterative process can be accelerated by using good start
configurations. If deleting an object does not cause dramatic changes in the
solution, it can be assumed that the solution of one jackknife will provide a
good starting configuration for the iterative process for computing another
jackknife solution. Therefore, the different jackknife solutions have been
computed in this way, that is, using the solution from the previously computed

jackknife in order to find the new jackknife solution.
10.1.2. Cross-validation via a split-half procedure

Apart from jackknifing, another procedure is considered for determining
the dependence of a solution on particular characteristics of the sampled
data. This procedure is “cross—validation” via a split-half procedure. That
is, first, one randomly splits the data into two halves, and the first half of
these is analyzed by means of INDOMIX. This analysis yields weights, to be
explained later, for the categories of qualitative variables and for the
quantitative variables. These weights are used to compute object scores for
the data in the second half. These “pseudo” object scores are compared to the
“original” object scores (resulting from INDOMIX on the second half ) by
inspecting the correlation between them. Finally, one can compute how well

these object scores represent the data in the second half, by simply computing
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the loadings of the object scores on the variables. Obviously, one may, in
addition use the inverse procedure, that is, cross—validating the INDOMIX
results of the analysis of the second half by applying the resulting weights
to the variables in the first half.

The weights to be used for computing object scores from the variables are
based on the following. It has been mentioned in section 9.3 that the INDOMIX
object scores can be written as X = UB, for some matrix B of weights. These
weights can be applied to any data set for which a U is given with columns
referring to the same quantitative variables and/or categories of qualitative
variables. In fact, these weights resemble the “component weights” in ordinary
PCA, which are used to compute the component scores as linear combinations of
the variables. In the present case these weights can be used to compute the
object scores as linear combinations of the columns of U, that is, of the
standardized quantitative variables and the columns of the transformed
indicator matrices for the qualitative variables. It should be noted that the
resulting object scores are not necessarily uncorrelated. Therefore, it is

interesting to compute the correlation between these components as well.
10.2. The cetacea data: MCA and INDOQUAL as clustering techniques

Vescia (1985b) has collected data on 36 cetacea (whales, porpoises and
dolphins) on the basis of zoological descriptions. The cetacea have been
“measured” on 15 variables, describing morphological, osteological, and
behavioral aspects of the animals under study. These variables have been
described in detail by Vescia (1985b), as well as by Meulman (1986, pp.28-33),
albeit in a different order. There were a few missing observations. Meulman
(1986) has considered a missing observation on a variable as “falling in a
different category”. This could be justified by the fact that most of the
(few) missing observations occurred systematically within one or two families
of cetacea. That is, “missing” may be considered as a characteristic in its
own right. In the present study missing data have been handled in the same
way. The data have been analyzed essentially as they have been given (in their
coded form) by Meulman (1986), except that one accidentally omitted white
whale has been recovered, and the four errors that had emerged in the original
data set, as pointed out by Vescia (1985b, p.13), have been corrected. One of

the “missing” data was in fact based on a coding error. The data set analyzed
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here is given in Table 10.1, where the corrected data are printed in bold
face. As can be verified by comparing the MCA results reported by Meulman

(1986) and those given here, the errors hardly affected the solution.

Table 10.1. The cetacea data.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 family

baleen whale
baleen whale
baleen whale
grey whale
finback whale
finback whale
finback whale
sperm whale
sperm whale
beaked whale
beaked whale
beaked whale
beaked whale
beaked whale
dolphin
dolphin
dolphin
dolphin
dolphin
dolphin
dolphin
dolphin
dolphin
dolphin
dolphin
dolphin
dolphin
dolphin
porpoise
porpoise
white whale
white whale
river dolphin
river dolphin
river dolphin
river dolphin
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The cetacea can be classified into several families. For each of the

cetacea, the family name is given in Table 10.1. These families can be
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grouped hierarchically into several classes. According to the theory of
Grasse (1955, see also Vescia, 1985a, p.16; Meulman, 1986, p. 29) the

classification given in Figure 10.1 can be made.

—— Baleen Whales (1)

Baleen Whales Grey Whale (2)

Finback Whales (3)

—— Sperm Whales (4)

— Physeteroidea —
—— Beaked Whales (8)
— Dolphins (5)
Toothed Whales —|— Delphinoidea ——— Porpoises (6)
—— White Whales (7)
— Platanistoidea River Dolphins  (9)

Figure 10.1. The classification of cetacea according to Grasse.

In the present study the data have been analyzed by means of both MCA
and INDOQUAL. The former analysis has also been reported by Van der Burg
(1985) and Meulman (1986, pp. 28-33). Both show that MCA (or Homogeneity
analysis, as it is called there) is to a certain extent capable of
distinguishing the original 9 families of cetacea, which is in accordance with
Van der Burg’s (1988) remark that MCA can be seen as a clustering technique.
As has been described in chapter 8, INDOQUAL may be expected to yield clusters
that are more compact and more clearly separated than the ones resulting from
MCA. Therefore, the MCA solution will be compared to the INDOQUAL solution.

In the present analyses the two—dimensional solutions of MCA (as in the
earlier analyses) and INDOQUAL are considered. This choice has been based
partly on the fact that after the second component adding extra components did
not increase much the amount of inertia accounted for by INDOQUAL. That is,

the inertias accounted for by the one-, two-, three-, four-, and
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Figure 10.2. The object coordinates resulting from MCA.

five-dimensional INDOQUAL solutions are 6.9 (16%), 11.2 (26%), 14.1 (33%),
16.6 (38%), and 19.0 (44%), respectively. Clearly, the percentages are quite
low, indicating that much of the information remains unaccounted for. One may
be satisfied with a small amount of inertia accounted for, however, when one
is interested in the most predominant relations between the variables. Because
the two-dimensional INDOQUAL solution was well interpretable in terms of the
original families of cetacea, and distinguished most of the families very
well, it was decided to settle for this solution in the present study.

The two~dimensional MCA solution has been rotated to simple structure by
means of a varimax rotation. The angle of rotation was 6.3°, which implies
that, in this case, the principal axes solution of MCA had almost optimal
simple structure.

The main purpose of the present analysis is the comparison of the object
coordinates resulting from MCA and INDOQUAL. These have been plotted in
Figures 10.2 and 10.3, respectively. The cetacea have been coded by their
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Figure 10.3. The object coordinates resulting from INDOQUAL.

family labels. In both plots, the families 1, 2, 3, 4, and 9, are well
separated. The families 5, 6, 7, and 8 are not far apart. Moreover, the
families 1, 2, and 3 are not far apart, and well separated from the other
families, as would be expected from Grasse’s classification. Similarly, the
closeness of families 5, 6, and 7 is in agreement with Grasse’s
classification. Families 4 and 9 are both quite far from the other families,
again in line with Grasse’s classification. On the other hand, families 4 and
8 are separated much more than one would expect on the basis of Grasse’s
classification. The fact that family 8 is found within the cluster of families
5, 6, and 7 is unexpected as well. The results from MCA and INDOQUAL are
globally equivalent. The differences between the MCA solution and the
INDOQUAL solution are to be found in the details. It can be observed that in
the INDOQUAL solution the families 1 and 2 are distinguished better than in
the MCA solution. A similar result holds for families 5 and 6. The families 5

and 8 are completely intertwined in the MCA solution, whereas in the
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INDOQUAL solution the members of family 8 are more to the bottom of the
cluster with members of family 5, and “disturbed” only by a few of these
members. Finally, the members of family 7 are closer to each other in the
INDOQUAL solution than in the MCA solution. These slight differences all
indicate that in the INDOQUAL solution the families of cetacea are
distinguished better than in the MCA solution. Incidentally, it should be
noted that the solution obtained by Meulman (1986, p.127) via a method that
fits the distances between profiles directly yields results that are yet
better interpretable in terms of the original families of cetacea. This was to
be expected because her method has been designed specifically for the purpose
of representing (distances between) objects. INDOQUAL on the other hand has

been developed for the purpose of representing both objects and variables.

Table 10.2. Loadings of the variables for MCA and INDOQUAL.

MCA + varimax INDOQUAL

comp.l  comp.2 comp.l comp.2
1. Neck 0.10 0.36 0.10 0.32
2. Form of the head 0.80 0.22 0.79 0.17
3. Size of the head 0.82 0.00 0.86 0.00
4. Beak 0.40 0.95 0.32 0.96
5. Dorsal fin 0.77 0.69 0.76 0.71
6. Flippers 0.27 0.49 0.19 0.46
7. Set of teeth 0.94 0.05 0.97 0.02
8. Longitudinal furrows 0.56 0.05 0.51 0.03
9. Blow hole 0.93 0.29 0.97 0.35
10. Color 0.13 0.17 0.09 0.13
11. Cervical vertebrae 0.17 0.45 0.13 0.42
12. Lachrymal & jugal bones 0.87 0.81 0.91 0.84
13. Head bones 0.93 0.74 0.98 0.78
14. Habitat 0.15 0.92 0.12 0.93
15. Feeding 0.92 0.13 0.95 0.08
sum of loadings 8.76 6.32 8.65 6.20
sums of squares of loadings 6.73 4.16 6.92 4.28
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Next, the loadings resulting from MCA (followed by varimax rotation) are
compared to those of INDOQUAL. These loadings are given in Table 10.2, with
loadings > .65 printed in bold face. The loadings from MCA and INDOQUAL are
highly similar. Nevertheless, there is a tendency for loadings that are high
in the MCA solution to correspond to even higher loadings in the INDOQUAL
solution, and for loadings that are small in the MCA solution to correspond to
even smaller loadings in the INDOQUAL solution. Table 10.2 also gives the
inertia accounted for by the components in terms of the MCA-model (sums of
loadings) and in terms of the INDOQUAL-model (sums of squares of the
loadings).

From Table 10.2 it is clear which variables are important for the
interpretation of each of the components. It is, however, not clear from these
loadings how the variables are related to the components. In order to get more
specific results it is useful to consider the category coordinates for all
variables. These are computed as the means of the object scores of objects
that belong to the category concerned. The category coordinates for the
INDOQUAL solution are given in Table 10.3.

Using the results given in Tables 10.2 and 10.3, one can interpret the
two components as follows. On the first component the variables 2, 3, 5, 7, 9,
12, 13 and 15 have high loadings (greater than 0.65). Therefore, this
component will be interpreted in terms of the categories of these variables

only. The first component can be interpreted by means of the following

contrasts:
flat or convex heads others (variable 2)
very big heads medium sized heads (variable 3)
backward and falciform fin other or no fin (variable 5)
without teeth with teeth (variable T7)
double blow hole single blow hole (variable 9)
missing observation other categories (variable 12)
symmetrical headbones asymmetrical headbones (variable 13)
plankton eaters others (variable 15)

This first component is also the component that contrasts the super family of
the Baleen Whales to that of the Toothed Whales, which is in agreement with
the interpretation in terms of category coordinates given above.

On the second component the variables 4, 5, 12, 13, and 14 have high
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loadings. In terms of the categories of these variables this component can be
interpreted as follows:

narrow and long beak other beak variable 4)
triangular fin other or no fin variable 5)

missing observation other categories

(
(

linked lachrymal & jugal bones independent bones (variable 12)
(variable 13)
(

river dwellers others variable 14)

As is clear from Figure 10.3, this second component especially contrasts
river dolphins, family 9, to the other cetacea, which corresponds well to the
interpretation given above. This finishes the interpretation of the results of
INDOQUAL on the cetacea data.

The stability of the INDOQUAL solution for the cetacea data has been
examined by means of a jackknife study, as has been explained in section
10.1.1. That is, 34 analyses (both MCA with varimax rotation and INDOQUAL)
have been performed on these data with each time one of the animals left out.
Because leaving out the fourth or 22" cetacean would result in empty
categories, no analyses have been performed with these animals left out. The
34 analyses resulted in sets of loadings and category coordinates that are
comparable over the analyses. In order to assess the stability of all the
parameters the standard deviations over the 34 jackknives have been computed.
These are given, together with the means over the 34 jackknives, in Table 10.4
for the loadings, and in Table 10.5 for the category coordinates.

Comparing these results with those of the original analyses on the
complete data set shows that the means of the loadings and category
coordinates overthe jackknives are very close to the loadings and category
coordinates in the original study. More importantly, the standard deviations
over the jackknives are typically very small both in the MCA and INDOQUAL
results. It can be seen that in particular the high and small loadings of
INDOQUAL tend to be more stable than those in MCA, whereas the medium sized
loadings tend to be more stable in MCA.

In order to indicate how one may translate the size of the standard
deviation in a measure for stability, it is useful to remark that the standard
deviation can be interpreted as a kind of mean deviation from the mean of the

parameter value over the jackknife solutions. Instead, the true mean of
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Table 10.4. Means and standard deviations of the loadings over 34 jackknife

studies.
MCA + varimax INDOQUAL
comp.1 comp.2 comp.1 comp.2

var.l 0.10 (0.009) 0.36 (0.030) 0.10 (0.008) 0.32 (0.032)
var.2 0.80 (0.016) 0.22 (0.022) 0.79 (0.021) 0.17 (0.019)
var.3 0.82 (0.015) 0.00 (0.000) 0.86 (0.016) 0.00 (0.000)
var.4 0.40 (0.019) 0.95 (0.007) 0.32 (0.020) 0.96 (0.003)
var.5 0.77 (0.017) 0.68 (0.035) 0.76 (0.021) 0.71 (0.034)
var.6 0.28 (0.030) 0.48 (0.025) 0.20 (0.025) 0.46 (0.032)
var.7 0.94 (0.004) 0.05 (0.017) 0.97 (0.004) 0.02 (0.006)
var.8 0.56 (0.036) 0.05 (0.014) 0.50 (0.041) 0.03 (0.006)
var.9 0.93 (0.004) 0.29 (0.038) 0.97 (0.003) 0.36 (0.025)
var.10  0.13 (0.024) 0.18 (0.033) 0.09 (0.019) 0.14 (0.027)
var.11 0.17 (0.026) 0.44 (0.031) 0.13 (0.024) 0.42 (0.033)
var.12 0.87 (0.012) 0.81 (0.029) 0.91 (0.013) 0.85 (0.023)
var.13 0.94 (0.004) 0.74 (0.043) 0.98 (0.002) 0.77 (0.041)
var.14 0.15 (0.013) 0.92 (0.009) 0.12 (0.011) 0.93 (0.006)
var.15 0.91 (0.005) 0.13 (0.026) 0.95 (0.005) 0.08 (0.013)

Table 10.5. Means and standard deviations of the category coordinates over 34
jackknife studies.

MCA + varimax INDOQUAL

var,cat  comp.l comp.2 comp.1 comp.2

1,1 -0.19 (0.013) 0.37 (0.016) -0.19 (0.013) 0.35 (0.019)
1,2 0.50 (0.019) —-0.97 (0.060) 0.51 (0.018) —-0.92 (0.061)
2,1 —-0.27 (0.055) -0.16 (0.120) —0.30 (0.050) —-0.32 (0.054)
2,2 0.04 (0.047) 0.51 (0.021) 0.01 (0.050) 0.41 (0.022)
2,3 0.65 (0.021) —-0.61 (0.049) 0.58 (0.020) —0.53 (0.045)
2,4 0.35 (0.022) 0.37 (0.033) 0.50 (0.018) 0.37 (0.022)
2,5  —2.42 (0.093) 0.05 (0.026) —-2.31 (0.087) 0.06 (0.012)
2,6 -1.57 (0.087) -0.06 (0.051) -1.78 (0.077) 0.04 (0.014)
3,1 -1.56 (0.056) 0.02 (0.023) -1.60 (0.056) -0.01 (0.011)
3,2 0.52 (0.017) —0.01 (0.008) 0.53 (0.018) 0.00 (0.004)
4,1 -0.63 (0.027) 0.17 (0.022) —-0.57 (0.028) 0.17 (0.017)
4,2 0.55 (0.032) 0.73 (0.047) 0.50 (0.021) 0.65 (0.032)
4,3 0.70 (0.022) 0.52 (0.025) 0.61 (0.020) 0.55 (0.024)
4,4 0.47 (0.020) —2.71 (0.140) 0.49 (0.019) -2.73 (0.151)
51  —0.47 (0.066) 0.09 (0.034) —0.47 (0.069) 0.12 (0.025)
5,2 0.31 (0.026) -1.80 (0.097) 0.34 (0.028) -1.84 (0.097)
5,3 0.59 (0.019) 0.53 (0.020) 0.58 (0.019) 0.54 (0.024)
5,4  —2.19 (0.090) 0.12 (0.015) -2.17 (0.088) 0.09 (0.009)
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Table 10.5. Means and standard deviations of the category coordinates over 34
Jjackknife studies (continued).

MCA + varimax INDOQUAL

var,cat comp.1 comp.2 comp.1 comp.2

6,1 —-0.00 (0.055) 0.29 (0.048) —-0.03 (0.047) 0.23 (0.026)
6,2 —-0.06 (0.053) -1.19 (0.050) -0.03 (0.055) -1.14 (0.056)
6,3 0.70 (0.024) 0.55 (0.029) 0.60 (0.021) 0.64 (0.028)
6,4 -0.95 (0.102) 0.37 (0.031) -0.79 (0.099) 0.30 (0.023)
7,1 0.34 (0.038) 0.34 (0.070) 0.34 (0.032) 0.23 (0.034)
7,2 0.53 (0.019) -0.18 (0.034) 0.54 (0.018) -0.13 (0.018)
7,3 -1.55 (0.083) 0.07 (0.043) -1.77 (0.076) 0.10 (0.012)
7,4 -1.62 (0.058) 0.15 (0.019) -1.59 (0.065) 0.09 (0.013)
7,5 -2.42 (0.093) 0.05 (0.026) —-2.31 (0.087) 0.06 (0.012)
8,1 0.15 (0.023) —-0.10 (0.018) 0.14 (0.022) —-0.08 (0.010)
8,2 0.63 (0.030) 0.53 (0.074) 0.57 (0.022) 0.42 (0.031)
8,3 —2.42 (0.093) 0.05 (0.026) —-2.31 (0.087) 0.06 (0.012)
9,1 —-0.04 (0.062) -1.03 (0.256) -0.06 (0.066) -1.17 (0.198)
9,2 0.50 (0.020) 0.44 (0.024) 0.54 (0.018) 0.49 (0.023)
9,3 0.58 (0.022) -0.67 (0.106) 0.55 (0.019) -0.73 (0.088)
9,4 -1.93 (0.071) 0.07 (0.013) -1.97 (0.072) 0.08 (0.008)
10,1 0.23 (0.035) 0.02 (0.046) 0.18 (0.031) —-0.00 (0.036)
10,2 0.06 (0.080) -0.96 (0.148) 0.07 (0.084) -0.84 (0.135)
10,3 0.58 (0.079) 0.12 (0.107) 0.54 (0.034) 0.36 (0.077)
10,4 —-0.50 (0.069) 0.36 (0.022) —-0.37 (0.063) 0.31 (0.016)
10,5 —-0.54 (0.294) 0.45 (0.126) —-0.63 (0.283) 0.37 (0.080)
11,1 —-0.66 (0.058) -1.07 (0.049) -0.58 (0.059) -1.05 (0.052)
11,2 0.25 (0.022) 0.41 (0.021) 0.22 (0.023) 0.40 (0.021)
12,1 0.34 (0.026) -2.20 (0.118) 0.35 (0.029) -2.25 (0.118)
12,2 0.53 (0.018) 0.46 (0.020) 0.54 (0.018) 0.48 (0.022)
12,3 -1.74 (0.064) 0.05 (0.014) -1.78 (0.064) 0.03 (0.009)
13,1 -1.93 (0.071) 0.07 (0.013) -1.97 (0.072) 0.08 (0.008)
13,2 0.54 (0.020) 0.34 (0.041) 0.55 (0.019) 0.38 (0.034)
13,3 0.51 (0.030) 0.34 (0.066) 0.52 (0.021) 0.32 (0.030)
13,4 -0.27 (0.055) -0.16 (0.120) -0.30 (0.050) -0.32 (0.054)
13,5 0.46 (0.021) -2.82 (0.155) 0.48 (0.019) —-2.87 (0.163)
14,1 0.47 (0.020) -2.71 (0.140) 0.49 (0.019) -2.73 (0.151)
14,2 0.45 (0.039) 0.46 (0.046) 0.40 (0.031) 0.42 (0.053)
14,3 -0.27 (0.058) 0.26 (0.027) -0.30 (0.055) 0.27 (0.017)
14,4 0.76 (0.031) 0.37 (0.044) 0.63 (0.022) 0.60 (0.034)
14,5 —0.26 (0.051) 0.35 (0.027) —-0.20 (0.047) 0.31 (0.021)
15,1 0.35 (0.029) 0.43 (0.049) 0.39 (0.026) 0.32 (0.028)
15,2 0.57 (0.021) -0.38 (0.043) 0.54 (0.019) -0.30 (0.028)
15,3 0.31 (0.027) 0.44 (0.031) 0.54 (0.019) 0.37 (0.025)
15,4 -1.93 (0.071) 0.07 (0.013) -1.97 (0.072) 0.08 (0.008)
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absolute deviations from the mean parameter value might have been used. The
standard deviation has been chosen here because it is more sensitive to
extreme deviations than the mean absolute deviation. When the standard
deviation is small, this does not only imply that the deviations are small on
the average, but also that extreme deviations from the mean parameter value
do not occur.

It can be concluded that both MCA and INDOQUAL yield two—dimensional
solutions that can be interpreted very well. The solutions differ slightly in
that the INDOQUAL solution tends to give slightly more compact and more
clearly separated clusters of cetacea families. In addition, most parameters

in both solutions are very stable.

10.3. Anenquiry about religion: Components analysis of nominal

variables

Vegelius and Backstrém (1981) have analyzed the results of an enquiry
among 118 theological students. The enquiry contained 24 questions on social
and religious background (demographic variables), religious activities, plans
for the future, and attitudes towards miscellaneous issues. All variables are
considered as nominal variables. The variables are mentioned in Table 10.6,
for the categories of the variables the reader is referred to Vegelius and
Béckstrom. Vegelius and Backstrém (1981) performed a PCA on the matrix of
Tschuprow’s T? coefficients among the variables. This method has been
explained in section 4.1. Their analysis yielded 8 eigenvalues greater than
one, and for this reason they reported 8 components. The loadings for the
variables have been rotated to simple structure by means of a varimax
rotation. This solution had a clear simple structure, and the components were
well interpretable. In Table 10.6 this solution is repeated. Only the loadings
greater than .40 (in the absolute sense) are reported.

As has been explained in chapter 1, PCA on generalized correlation
coefficients is rather limited in that it provides only loadings for the
variables, without a representation for the objects (i.e., students) and for

the categories of the variables. For this reason, the data have been
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Table 10.6. Loadings from the PCA solution reported by Vegelius and Bickstrom.

Variables Components
1 2 3 4 5 6 7 8

Sex

Year of birth .67
Father’s social group 75
Father’s education .75
Mother’s social group .79

Mother’s education .78

Marital status .68
Future degree .81

Future job .82

10. Father’s religious observance .62 41

11. Father’s denomination .85

12. Father’s participation in church worship .69

13. Mother’s participation in church worship .69

14. Mother’s religious observance .62

15. Mother’s denomination .82

16. Student’s denomination -.43 .40
17. Student’s participation in church worship .70

18. Student’s praying .65

19. Student’s participation in Communion .64

20. Student’s reading the Bible .53

21. Political attitude

22. Reaction to the Jesus Movement N

23. Future of the Jesus Movement .78

24. Place of childhood and youth

PO OoA W

reanalyzed*here both by means of MCA and INDOQUAL. In contrast to Vegelius
and Backstrém (1981) only two components have been retained in the present
analyses. This choice of dimensionality was based partly on a comparison of
the one—, two—, three—, and four—dimensional ]NDOQUAL solutions. The inertia
accounted for by these solutions was 5.2 (6%), 8.3 (10%), 9.9 (12%), and 11.4
(14%), respectively. The percentages of inertia accounted for are very small,
but, again it should be noted that in order to extract the most interesting
information one may be satisfied with a solution that accounts only for a
small part of the inertia of the data. The INDOQUAL solutions appeared to be

nested approximately. For instance, the first two components in the three- and

" The author is obliged to Anders Béckstrém and Jan Vegelius who kindly made
the original data available.
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four-dimensional solutions were closely related to the components in the
two—dimensional solution. The third and fourth components were not very
interesting in that they only pertained to two variables each. Obviously, the
two-dimensional solution does not describe the data at hand exhaustively.
However, it does seem to capture the most interesting relations between the
variables in the enquiry. For this reason, in the sequel only the
two-dimensional INDOQUAL solution is reported. For reasons of comparability
the same dimensionality has been chosen for the MCA solution.

The (unrotated) loadings of the MCA solution are reported in Table 10.7.

Table 10.7. Variable loadings resulting from MCA, MCA with varimax, and
INDOQUAL.

MCA MCA with varimax INDOQUAL
1 2 1 2 1 2

1. 0.22 0.00 0.13 0.10 0.10 0.10
2. 0.04 0.22 0.08 0.18 0.04 0.10
3. 0.04 0.08 0.05 0.07 0.03 0.04
4. 0.10 0.28 0.24 0.14 0.15 0.06
5. 0.07 0.07 0.10 0.05 0.08 0.03
6. 0.04 0.10 0.11 0.03 0.05 0.02
7. 0.10 0.12 0.06 0.15 0.04 0.08
8. 0.31 0.17 0.04 0.44 0.02 0.52
9. 0.48 0.27 0.14 0.62 0.09 0.67
10. 0.69 0.20 0.86 0.04 0.93 0.02
11. 0.70 0.21 0.85 0.05 0.93 0.04
12. 0.73 0.40 0.84 0.28 0.90 0.10
13. 0.71 0.40 0.82 0.29 0.87 0.11
14. 0.68 0.16 0.81 0.04 0.90 0.02
15. 0.62 0.13 0.70 0.05 0.80 0.02
16. 0.06 0.13 0.06 0.14 0.05 0.11
17. 0.60 0.36 0.19 0.76 0.11 0.86
18. 0.48 0.36 0.08 0.76 0.04 0.87
19. 0.54 0.35 0.16 0.73 0.11 0.86
20. 0.49 0.29 0.22 0.56 0.14 0.60
21. 0.24 0.10 0.08 0.26 0.08 0.18
22. 0.19 0.01 0.13 0.06 0.09 0.07
23. 0.11 0.01 0.08 0.04 0.06 0.03
24. 0.08 0.05 0.06 0.07 0.05 0.04
sum 8.32 4.47 6.89 5.91 6.66 5.55
sum of

squares 4.49 1.20 4.27 2.93 4.85 3.42
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The MCA solution has been rotated to simple structure by means of varimax. The
axes were rotated over an angle of 38°. The MCA loadings after rotation are
reported in Table 10.7 as well. Finally, Table 10.7 contains the loadings
resulting from the INDOQUAL solution, with loadings > .4 printed in bold face.

From Table 10.7 it is clear that the unrotated and rotated MCA solutions
lead to different interpretations of the two components. That is, in the
unrotated MCA solution many variables have rather high loadings ( > .4), while
on the second component only the variables 12 and 13 have high loadings. The
first component can be interpreted as a rather general “Religious behavior of
parents and student” component. The second component, on the other hand, can
easily be interpreted as “Parent’s participation in church worship”, but this
component does not capture much of the information in the data.

After varimax rotation the picture is quite different. Now only the
variables 10, 11, 12, 13, 14, and 15 have high loadings on the first
component, and the variables 8, 9, 17, 18, 19, and 20 have high loadings on
the second component. The first component can be interpreted as “Religious
behavior of parents”, and the second component as “Student’s religious
behavior and plans”. The components resulting from the rotated MCA solution
seem to be much more interesting than those of the unrotated MCA solution.

The loadings of the two-dimensional INDOQUAL solution have been
reported in Table 10.7 also. The components can be interpreted in much the
same way as the components of the MCA solution after varimax rotation,
because loadings greater than or equal to .4 are found in both analyses for
the same variables. Nevertheless, the solutions differ systematically. It can
be verified that loadings above .4 in the MCA solution correspond to higher
loadings in the INDOQUAL solution, and, in all»but, one case, loadings below
-4 in the MCA solution correspond to smaller loadings in the INDOQUAL
solution. This clearly demonstrates that INDOQUAL tends to find more
extreme loadings than MCA, even after varimax rotation. For the
interpretation this does not make a lot of difference, however. The INDOQUAL
components can be said to be interpretable in the same way as the rotated
MCA components, but in the INDOQUAL solution this interpretation is
brought out more clearly.

On the basis of the loadings alone, one can give only a rather global
interpretation of the components by means of studying the loadings of the

variables on the components. Because the variables are nominal variables, it
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is of interest to see how these components can be interpreted in terms of the
categories of the variables as well. In Table 10.8 the category coordinates
(category centroids of object coordinates) from the INDOQUAL solution are
given only for the variables with loadings greater than .4.

With these category coordinates the components of the INDOQUAL solution
can be interpreted as follows. Component 1 (called “Religious behavior of
parents” above), contrasts, for both parents, religious observance versus no
religious observance, denomination to a certain church versus no answer, and,
much versus little participation in church worship. Clearly, religious

behavior can be further interpreted as “amount of participation in religious

Table 10.8. INDOQUAL category coordinates of the variables with the highest
loadings.

comp.l  comp.2

var.8: Future Degree

Candidate of Theology -0.09 -0.51
Bachelor of Arts 0.31 1.39
Other degree -0.04 -0.16
Don’t know -0.06 -0.08
var.9: Future Occupation

Clergyman -0.14 -0.51
Teacher 0.38 1.43
Deacon 0.52 -0.55
Other occupation -0.45 -0.40
Don’t know -0.14 -0.35
var.10: Father’s religious observance

Yes -1.08 -0.16
No 0.85 0.10
Don’t know 0.86 0.27
var.11: Father’s denomination

Church of Sweden -1.07 -0.29
Other denomination -1.13 0.21
No answer 0.85 0.12
var.12: Father’s participation in worship

Never 0.91 0.46
At least once a year 0.83 0.23
At least six times a year 0.60 -0.53
At least once a month -1.00 -0.20
At least once a week -1.14 -0.12
Don’t know 0.82 -0.45
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Table 10.8. INDOQUAL category coordinates of the variables with the highest
loadings (continued).

comp.l  comp.2

var.13: Mother’s participation in worship

Never 0.89 0.63
At least once a year 0.90 0.21
At least six times a year 0.72 -0.46
At least once a month -0.94 -0.18
At least once a week -1.13 -0.13
Don’t know 0.48 0.47
var.14: Mother’s religious observance

Yes -1.00 -0.15
No 0.90 0.11
Don’t know 0.89 0.35
var.15: Mother’s denomination

Church of Sweden -0.85 -0.17
Other denomination -1.02 0.01
No answer 0.89 0.13
var.17: Student’s participation in worship

Not for years 0.37 2.35
At least once a year 0.65 1.95
At least six times a year 0.52 0.70
At least once a month 0.16 -0.47
At least once a week -0.28 -0.44
var.18: Student’s praying

Today or yesterday -0.10 -0.39
One week ago at most 0.38 -0.42
One month ago at most 0.07 2.15
Not for years 0.46 2.19
Don’t know 0.63 2.29
var.19: Student’s participation in Communion

One week ago -0.19 -0.47
One month ago -0.02 -0.37
Six months ago 0.72 -0.47
One year ago -1.20 0.15
Not for years 0.42 2.03
Don’t know 0.88 0.36
var.20: Student’s reading the Bible

Today or yesterday -0.23 -0.46
One week ago 0.27 -0.04
One month ago 0.51 0.79
Six months ago -0.89 2.71
Not for years 0.74 1.84
Don’t know 1.07 -0.97
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activities”. On the basis of this interpretation one might suspect that the
category “No answer” of variables 11, and 15, in fact means “No member of any
denomination”. The second component (called “Student’s religious behavior and
plans” above) can be interpreted as the contrast between students preparing
for a clerical profession versus a profession as a layman (variables 8 and 9),
as well as the “amount of the student’s participation in religious activities”
(variables 17-20). Again, interpretation on the basis of category coordinates
complements the previous interpretation in terms of the variables in a useful
way.

Finally, the results reported here are compared to those of Vegelius and
Béckstrom (1981). It can be seen that the components 1 and 6 in the latter
solution are practically completely comprised in the first component in the
INDOQUAL solution, and that the components 2 and 5 in the Vegelius and
Béckstrém solution are summarized well by the second INDOQUAL component.
This indicates that the Vegelius and Backstrém solution provides components
that could well be combined into fewer components. On the other hand, the
third, fourth, seventh and eighth components in the Vegelius and Backstrém
solution do not reappear in the INDOQUAL solution. This may be a consequence
of the choice of a rather small dimensionality. In fact, the third component
of the three—dimensional INDOQUAL solution is closely related to the seventh
component in the Vegelius and Backstrém solution, and slightly related to
their third component as well. These and higher components have not been
considered in the INDOQUAL solution reported here.

10.4. The abortion survey: Components analysis of mixed variables

Gifi (1981, pp. 357-360) has described data from a survey among 575
respondents on attitudes with respect to abortion, capital punishment,
euthanasia, and sexual freedom. In addition, the scores on several background
variables were available. These data have been analyzed by Gifi by means of
several options of the PRINCALS program. In the present section part of
these data is analyzed by means of INDOMIX, and the solution will be
compared to that of PCAMIX.

" The author is obliged to Jacqueline Meulman who kindly made the data
available.
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The variables on capital punishment are hardly related to the other
variables, as was found by Gifi (1981), and have therefore been excluded from
the analysis, just as has been done by Gifi. In contrast to what has been done
by Gifi, however, no other variables have been left out of the analysis. The
data set contained many missing data. Because the present version of the
INDOMIX program does not allow for missing data, all respondents with one or
more missing data (22 %) have been deleted. The remaining sample contained
446 respondents. Of the 34 variables that remained after deletion of the
capital punishment variables, two variables have been recoded as follows: the
eleven categories of the variable “Present profession or job” (FUN) have
been reduced to nine categories by merging the categories “managerial, more
than ten employees” and “managerial, less than ten employees”, and the
categories “free profession” and “independent farmer”; the seven categories
of the variable “degree of urbanization” (URB) have been reduced to five
categories by merging the three categories “Amsterdam”, “Rotterdam”, and
“The Hague”. The other variables have been analyzed in their original form,
as described by Gifi (1981). They are labelled here (as in Gifi) as Al
through A16 (questions concerning abortion), EUl through EU5 (questions
concerning euthanasia), SF1 through SF5 (questions concerning sexual
freedom), SEX (male, female), AGE (six age categories), SOC (eight social
class levels), REL (religion: four categories), POL (political preference:
five categories), and EDU (four levels of education). Together with FUN and
URB this leads to the total of 34 variables analyzed here.

The variables are rather different in type. The variables Al through A8
and EU1 through EU5 are binary variables (agree or disagree with a statement).
The variables A9 and A10 form six—point scales about the duration of pregnancy
after which abortion is justifiable. The categories range from “until three
months” (1) to “after six months” (5), while category 6 stands for “not
justifiable”. The latter category has been recoded as 0. The variables All
through Al4, and SF1 through SF5 are five—point Likert scale items. These
variables, as well as the variables A9 and Al0, have been considered as
quantitative variables, because they clearly implied an ordinal scale, and,
according to the theory in chapter 3, one way of dealing with ordinal
variables is to treat them just as quantitative variables. The background
variable SOC is also treated as a quantitative variable, because its eight

categories are clearly ordered. Variables A15 and Al6, just as the background
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variables REL, POL, EDU, FUN, and URB, have been been considered as nominal
variables.

The data described above have been analyzed by both PCAMIX and
INDOMIX. The variables have not been standardized, but some of the variables

have been weighted. That is, in order to let the background variables serve

Table 10.9. Loadings from PCAMIX and INDOMIX.

PCAMIX INDOMIX INDOMIX loadings
for quantitative
variables

comp.1 comp.2 comp.1 comp.2 comp.l comp.2
Al 0.00 0.19 0.02 0.04
A2 0.63 0.00 0.63 0.00 0.79
A3 0.26 0.10 0.29 0.00 0.54
A4 0.59 0.00 0.60 0.00 0.78
A5 0.19 0.13 0.23 0.02 0.48
A6 0.61 0.00 0.63 0.00 0.80
A7 0.66 0.00 0.67 0.00 0.82
A8 0.57 0.00 0.57 0.00 0.75
A9 0.42 0.03 0.43 0.01 -0.66
Al 0.48 0.02 0.49 0.01 -0.70
Al 0.59 0.01 0.60 0.00 0.77
Al12 0.37 0.18 0.48 0.03 -0.69
Al3 0.49 0.13 0.61 0.02 -0.78
Al4 0.35 0.20 0.47 0.03 -0.69
Al5 0.33 0.03 0.26 0.00
Al6 0.21 0.05 0.20 0.01
EU1 0.27 0.07 0.26 0.00 0.51
EU2 0.22 0.04 0.20 0.00 0.45
EU3 0.31 0.05 0.30 0.00 0.55
EU4 0.21 0.15 0.23 0.02 0.48
EU5 0.10 0.00 0.07 0.00
SF1 0.04 0.15 0.06 0.09
SF2 0.02 0.34 0.07 0.22 0.47
SF3 0.00 0.45 0.02 0.76 0.87
SF4 0.06 0.37 0.12 0.22 0.47
SF5 0.02 0.56 0.06 0.68 0.83
SEX 0.00 0.00 0.00 0.00
AGE 0.01 0.14 0.02 0.14
S0C 0.00 0.01 0.00 0.01
REL 0.21 0.06 0.24 0.04
POL 0.22 0.11 0.27 0.02
EDU 0.01 0.07 0.01 0.07
FUN 0.03 0.07 0.04 0.05
URB 0.05 0.00 0.04 0.01
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mainly as “supplementary” or “passive” variables that do not actually affect
the solution, these variables have been given a very small weight (0.001) in
the analyses.

In all analyses the dimensionality of the solutions was set at two,
because the first two components of the three-dimensional INDOMIX solution
hardly differed from those of the two-dimensional solution, and the third
component essentially represented only one variable. The PCAMIX solution
accounted for 12% of the inertia by means of the SUMPCA model (IAFg = .12),
while it accounted for 17% of the inertia in terms of the INDORT model
(IAF; = .17). The INDOMIX solution accounted for 19% of the inertia
(IAF; = .19). Clearly, the INDORT model fits the data considerably better
than the more restricted SUMPCA model.

The loadings from PCAMIX (after varimax rotation) and INDOMIX are
in bold face. Clearly, the loadings from PCAMIX and INDOMIX differ, but

when the components are interpreted on the basis of the variables that load

given in the first four columns of Table 10.9. Loadings > .2 have been printed

high on them, the components are interpreted almost identically in the two
analyses. That is, the variables A2 through A16 and EU1 through EU4 have high
loadings on the first component, and the variables SF2 through SF5 have high
loadings on the second component. In addition, the first component is related
to the background variables REL and POL.

For a more detailed interpretation, it is useful to note that for
quantitative variables (including binary variables) the loadings given here
are the squares of the product-moment correlations. For the quantitative
variables with INDOMIX loadings higher than .2 the ordinary product—moment
correlations between the variables and the components concerned, are given in
the last two columns of Table 10.9. The interpretation of the components in
terms of the nominal variables can be facilitated by inspection of the
category coordinates. For the variables Al5, A16, REL and POL these are
given in Table 10.10.

On the basis of Tables 10.9 and 10.10 the first INDOMIX component can
be interpreted as “liberal versus conservative”. This can be seen as follows.
The first component is strongly positively correlated with the variables A2
through A8. These items ask whether (1) or not (2) abortion is allowed under
specified circumstances. This component is negatively correlated with A9 and

Al0, asking after how much time abortion is still justifiable (from “not
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Table 10.10. Category coordinates on the INDOMIX dimensions for four high
loading nominal variables.

comp.l comp.2

A 15: Should abortion requests be handled by law ?

law desired allowing for abortion only in special cases  0.50 0.01
law desired making abortion difficult 0.23 -0.19
no law desired, doctor decides in abortion requests -0.57 0.03

A 16: Should abortion be permitted after twelve weeks of pregnancy ?

after 12 weeks absolutely forbidden 0.65 -0.12
abortion after 12 weeks in special cases only -0.11 0.02
law should not specify a time limit -0.60 0.13
REL: Religion
Reformed 0.24 -0.43
Calvinist 0.76 0.18
Roman Catholic 0.30 0.04
none -0.57 0.10
POL: Political preference
left -0.38 -0.04
denominational 0.70 -0.02
liberal -0.41 0.19
right 149  -0.68

justifiable” to after “six months”). Furthermore, the variables All to Al4
correlate strongly with the first component. These variables indicate on
five-points scales whether the respondents agree (low scores) or disagree
(high scores) with certain moralistic statements on abortion. The first of
these (All) is a pro—abortion statement, which correlates positively with the
first component, the others (Al12 through Al4) are against abortion, and
correlate negatively with the first component. The variables EUl through
EU4 also correlate (positively) with the first component. These questions
ask whether (1) or not (2) euthanasia is justifiable under certain specified
circumstances. Summarizing, one can see that persons with low scores on the
first component typically allow for abortion in many circumstances, that is,
agree with many of the statements A2 through A8, find abortion justifiable
even after long periods of pregnancy (A9 and Al0), agree with the pro
abortion statement (All) and do not agree with the contra abortion statements
(A12 through Al4), find that laws regulating abortion or setting time limits

regarding abortion are not needed (Al5 and A16), and find that euthanasia is
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justifiable under several circumstances (EU1 through EU4), while people with
high scores typically take the reversed stand. This explains why this
component can be labeled as “liberal versus conservative”. As has been said
earlier, two background variables are also related to this component. Upon
inspection of the category coordinates of these variables (REL and POL),
it is clear that at the lower end of this dimension one finds people without
religion, and with left or liberal political preference. At the other end of
the dimension one finds Reformed, Calvinist, and Roman Catholic respondents,
with denominational or conservative political preferences.

The second component is positively correlated with four variables, SF2
through SF5. These variables are five-point ratings (from agree completely
(1) to disagree completely (5)) of statements that are clearly contra sexual
freedom. This component can hence simply be interpreted as “contra versus pro
sexual freedom”. This completes the description of the analysis of the
abortion survey data.

As has been mentioned in section 10.1.2, one way of studying the
stability of one’s data is by means of cross—validation. This can be done as
follows. The data set is split into two halves, which are both reanalyzed.
These analyses yield weights (for the categories and the quantitative
variables) which can be applied to the other half of the data (see section
10.1.2). The resulting components of object coordinates are not necessarily
uncorrelated, but apart from this one can handle them as ordinary INDOMIX
components. In order to see how sensitive the analysis is to particular
characteristics of the sample drawn, the component scores and the loadings
that can be computed after applying the weights to one half of the data are
compared to the component scores and loadings resulting from INDOMIX on this
half of the data. When the component scores and the loadings are very much the
same, one can conclude that the analysis is hardly sensitive to the data. The
component scores from the two analyses are compared by computing the
correlation between them. In order to compare the loadings from one analysis
to that of another, we use the coefficient proposed by Gower (1971) for the
association between two numerical variables. In our case, this coefficient is
equal to one minus the mean of the absolute differences between the loadings
from the different solutions on a component. It has a maximum of one, which
is attained when the loadings are identical.

For the present data this kind of cross—validation seems more useful than

140



a (random) jackknife study. Jackknifing is meant for studying changes under
deletion of just one individual, which seems most appropriate in samples that
intend to capture almost the whole population (as in the cetacea data). When a
sample is intended to represent a much larger population, the present
cross—validation procedure seems more appropriate, because it is based on
comparing subsamples that should, just as the original sample, be
representative for the population.

The cross—validation study undertaken here started with splitting the
sample into two groups by alternatingly assigning one individual to the one
and the next to the other group. First, the weights resulting from the
INDOMIX analysis of the second half have been applied to the first half. The
resulting components were hardly correlated (p.m.c. equal to -.13). They
correlated strongly with the components resulting from INDOMIX on this half
of the data, that is, the correlation between the first components was .997
and that between the second components was .978. The resulting loadings have
been compared with the loadings from an INDOMIX analysis on the first half,
by computing Gower’s coefficients over the loadings on the (corresponding)
components of the different solutions. This coefficient was .991 for the first
components and .988 for the second component. These values correspond to
mean absolute differences between the loadings of 0.009, and 0.012,
respectively.

The inverse procedure of applying weights resulting from the first half
to the data in the second half resulted in components that were nearly
uncorrelated (p.m.c. equal to .10). Again, they correlated strongly with the
components resulting from INDOMIX on this half of the data, that is, .997
for the first components and .980 for the second components. The coefficients
for comparing the resulting loadings were 0.991 for the first component, and
0.987 for the second component, corresponding to mean absolute differences
between the loadings of 0.009, and 0.013, respectively.

Clearly, the correlations between corresponding components and the
values of Gower’s coefficient for comparison of the loadings on the
corresponding components are all very high. On the basis of this
cross—validation study it can be concluded that the INDOMIX solution

reported above is not very sensitive to sample fluctuations.
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10.5. Residual complaints after head injury: Components analysis of

binary variables

Van Zomeren and Van den Burg (1985) have observed a number of patients
who had incurred a severe closed head injury. Many of them still reported some
residual complaints, even after two years after the accident. These complaints
have been recorded by means of 17 items, listed in Table 10.11. Apart from
these (binary) variables, two measures indicating the severity of the injury
have been scored as well. These latter variables are post—traumatic amnesia
(PTA), and the extent to which previous work could be resumed (RTW).

The data on 50 patients have been reanalyzed*in the present study. Two
of the original 52 patients have been excluded from the analysis because some
observations were missing on them. The variables PTA and RTW are ordinal
variables. They have been dichotomized here for simplification. PTA could very
well be dichotomized by using the cut-off point proposed by Van Zomeren and
Van den Burg (at 13 days). RTW was a five point—scale which could be
distinguished roughly into “former work resumed” versus “former work resumed
only partly or not at all”. This variable has been dichotomized accordingly,
yielding a set of 19 dichotomous variables.

The data, transformed as described above, have been analyzed by both
MCA and INDOQUAL. Because the variables are all dichotomous, MCA comes
down to PCA, and instead of INDOQUAL, INDOMIX can be used while all
variables are considered numerical, which is computationally attractive (as
has been discussed in chapter 9). The MCA analysis is followed by a varimax
rotation.

In both analyses, two-dimensional solutions have been studied. This
dimensionality has been chosen partly for reasons of comparison with the PCA
solution reported by Van Zomeren and Van den Burg, and partly because it
yielded an interpretable solution, in contrast to, for instance, the
three—dimensional INDOQUAL solution for these data. In contrast to the other
examples in the present study, the loadings that are reported here are

ordinary (point-biserial) correlations between the variables and the

" The author is obliged to Pim van den Burg for kindly providing the original
data
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components, just as in ordinary PCA. These loadings are recorded in Table
10.11. For reasons of comparison, the last two columns of Table 10.11
contain the PCA-loadings reported by Van Zomeren and Van den Burg (1985).

Loadings > .60 are printed in bold face.

Table 10.11. Loadings resulting from MCA and INDOQUAL, as well as loadings
reported by Van Zomeren and Van den Burg (1985).

MCA + varimax INDOQUAL Original loadings

comp.l comp.2 comp.l comp.2 comp.l comp.2
PTA 0.76  -0.09 0.74 0.00 -0.13 0.80
RTW 0.71 0.10 0.73 0.10 0.14 0.70
forgetfulness 0.65 0.19 0.71 0.07 0.19 0.63
irritability 0.13 0.54 0.21 0.37 0.59 -0.03
slowness 0.69 0.06 0.61 0.16 0.25 0.66
poor concentration 0.52 0.53 0.63 0.30 0.61 0.42
fatigue 0.39 0.64 0.42 0.53 0.68 0.31
dizziness 0.14 0.44 0.17 0.32 0.52 -0.03
incr.need of sleep 0.00 0.37 0.12 0.04 0.51 -0.24
intol. of light 0.10 0.68 0.25 0.30 0.72 -0.07
intol. of noise 0.42 0.52 0.30 0.83 0.61 0.33
loss of initiative  0.65 0.21 0.72 0.06 0.51 0.38
headache 0.13 0.64 0.07 0.17 0.57 -0.17
crying more readily 0.32 0.46 0.37 0.23 0.60 0.16
inability to do two
things simultan. 0.68 0.38 0.66 0.42 0.44 0.62
intol. of bustle 0.22 0.55 0.09 0.93 0.61 0.12
depressed mood 0.69 0.04 0.70 0.01 0.32 0.53
more anxious 0.00 0.40 0.09 0.14 0.33 -0.05
indifference 0.04 0.48 0.09 0.18 0.24 0.13

The differences between the PCA loadings from Van Zomeren and Van den
Burg (1985) and the MCA loadings reported here can be attributed to several
differences in the procedures followed. Van Zomeren and Van den Burg (1985)
did not dichotomize PTA and RTW, and performed a quartimax rotation instead

of a varimax rotation. Especially the latter may well explain the differences,
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because a quartimax rotation tends to yield a strong general component, which
corresponds to the finding that Van Zomeren and Van den Burg’s first component
can be considered quite general. In order to check this, the solution reported
by Van Zomeren and Van den Burg has been matched to the MCA solution, via an
orthogonal Procrustes rotation (Green, 1952). The rotated components were
related highly to the MCA components. That is, the congruence coefficient
(Tucker’s ¢) measured between the loadings on the first components was .99,
and that between the second components .96, indicating that the loadings yield
equivalent interpretations.

The INDOQUAL solution differs from the MCA solution especially with
respect to the second components (Tucker’s ¢ equal to .84). The Procrustes
rotation did not improve this. In MCA this component seems hard to
interpret, because the variables that have high loadings on it do not seem to
have much in common, except some forms of intolerance. In INDOQUAL the
component can be seen as a dimension expressing more specifically intolerance
of noise and bustle. In both analyses, the first component can be interpreted
in the same way as Van Zomeren and Van den Burg (1985) did for their second
component, that is, as a “severity”-dimension. Just as in Van Zomeren and Van
den Burg (1985), this component is highly related to PTA and RTW, as well as
to forgetfulness, slowness, poor concentration, inability to do two things
simultaneously, and depressed mood. Unlike in Van Zomeren and Van den Burg
(1985), in both analyses the first component is also related to loss of

initiative, which corresponds to what one might have expected.

10.6. Characteristics of alcoholic and nonalcoholic drinks: Effects of

standardizing nominal variables

For testing the INDOMIX program the author has created some fictitious
data sets that are based on common sense knowledge. The data set to be
considered in the present section has been constructed as follows. Some
characteristics of 34 drinks, both soft—drinks and alcoholic drinks, have been
given in terms of the following (seven) variables: alcoholic strength (five
categories, from no alcohol to over 30 %), addition of sugar (yes or no), does
drink contain carbonic acid (yes or no), kind of raw product which essentially
determines the taste of the drink (fruit, grain, herbs, artificial flavors),

price (four categories from cheap to expensive), taste (very sweet, sweet,
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dry, bitter), and color (colorless, red, light-red, yellow, brown). The scores
of the drinks on the variables are fictitious in that they are based on the
author’s (limited) knowledge of these drinks. As a consequence, certain data
might actually be technically incorrect, but in general it can be expected
that these data reflect reality rather well. The data with the names of the
drinks (some of which are exclusive for certain European countries) are given
in Table 10.12.

Table 10.12. Characteristics of 34 drinks.

variables Alcohol Sugar Carbon Raw prod. Price  Taste Color
S5cat 2cat 2cat 4cat 4cat 4 cat 5cat
labels

syrop
cola
seven—up
orangina
apple juice
orange juice
red bordeaux
wh. bordeaux
red Lambrusco
rosé

Moselle wine
Sekt

Riesling
champagne ds
champagne br
sherry

port
Cointreau
jenever

gin

whisky

beer

old-br. beer
guinness
cider
strawberry lq
banana liquor
cherry brandy
bl.currant 1q
slivovic

ouzo

Pernod
Jagermeister
rum

OUR OV OU O B WD R NN N BN UL OT UL OT G R RN RN RN R N R N N = b b= et
HFNNEFEFNDERRRRERODFRFDNDNNNNDEDNDNNNDNNDDNDDNDDNDDNDDNDN
NNONONDNONDNDNDNFERFFFENDNDNDNDNNDF R DN DN - N
DO QOO i W R R N NDNDDNNDNRF R NN
WO D R W W WWNNNF AR WA WWER DANDNDINDNDNDNDNDNKF - - N
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These data have been analyzed by means of INDOQUAL with and without
standardization of the variables. As has been explained in chapter 3,
standardization of nominal variables comes down to weighting these variables
by (mj-1)"2 Clearly, standardizing the variables in the present data set
implies using much larger weights for the variables Sugar and Carbon than for
the other variables. In section 4.4 some grounds for choosing whether or not
to normalize one’s variables have been discussed. In the present section the
effects of these choices on the results of an INDOQUAL analysis of the data
set described just above will be compared.

The dimensionality of the solutions has been set, rather arbitrarily, to
two after verifying that it gave an interpretable solution. Table 10.13
reports the loadings of the seven variables on the 2 components in both
solutions. Loadings > .70 are printed in bold face.

Table 10.13. Variable loadings resulting from INDOQU AL with and without
standardization, respectively.

INDOQUAL on INDOQUAL on
standardized variables nonstandardized variables
comp.l  comp.2 comp.l comp.2
Alcohol 0.38 0.56 0.80 0.94
Sugar 0.96 0.00 0.57 0.02
Carbon 0.00 0.98 0.06 0.10
Raw product 0.57 0.08 0.84 0.33
Price 0.11 0.42 ‘ 0.42 0.71
Taste 0.53 0.02 0.54 0.12
Color 0.10 0.22 0.13 0.83

As is clear from Table 10.13, the INDOQUAL solutions on standardized and
nonstandardized variables differ markedly. When the data are standardized,
the solution is, in fact, dominated by the two binary variables Sugar and
Carbon, the variables receiving the largest weights due to the
standardization. Some of the other variables have modest loadings on these
components as well, but by no means as high as those of the binary variables.

In the INDOQUAL analysis of nonstandardized variables the binary variables
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Figure 10.4. Object coordinates resulting from INDOQUAL on standardized
variables.

only play modest roles. This solution is based more on the amount of alcohol
in the drinks, the raw product determining the taste, the price, and the color
of the drinks. The latter solution is more informative than the first in that
it represents the data in terms of more variables.

The object coordinates of the two solutions are given in Figures 10.4 and
10.5 for the INDOQUAL solution of standardized variables and of
nonstandardized variables, respectively. In the analysis of the standardized
variables, the drinks are clustered in four groups with characteristics “sugar
and CO, added”, “contains CO, but no sugar added”, “sugar added but no CO,”,
“neither sugar nor CO, added”. This results, for instance, in a cluster
containing fruit juices, several wines, and strong drinks like gin and whisky
at the same time, which does not seem to correspond to how one would typically
classify drinks. In the solution of INDOQUAL on nonstandardized variables

the drinks are not clustered as clearly as in the other analysis, but the
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Figure 10.5. Object coordinates resulting from INDOQUAL on nonstandardized
variables.

picture does seem to make more intuitive sense, especially separating strong
drinks from soft drinks.

It can be concluded that, at least in the present case, it is not useful
to standardize the qualitative variables. The original variables can be
considered to yield quantification matrices in comparable units, and what is
called standardizing the variables might be seen as, in fact, un-standardizing
the variables, that is, letting variables with few categories have the

strongest impact on the solution.

10.7. Italianfreight transportation data: A comparison of INDORT and
TUCKALS-3 on quantification matrices

Marchetti (1988) has described a data set collected by the Italian

National Research Organization (CNR) on eight characteristics of 54 Italian
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freight transportation industries. These characteristics are expressed in
terms of eight variables, which are considered as nominal variables both here
and by Marchetti (1988). These variables are labelled A through H, just as
has been done by Marchetti (1988). They measure:

A: number of employees (three categories)

B: number of tractors (three categories)
: use of containers (binary: yes or no)
: number of semi-trailers (four categories)

: number of transports in 1981 (three categories)

=)

juridical status (four categories: joint-stock company, limited

liability company, general or limited partnership, sole traders)

o

: location (three categories: north, center, south)
H: type of firm (four categories: shipping agent, forwarding agent and
carrier, lorry—conveyor, carrier).
Variables A, B, D and E are polytomized quantitative variables, but the
ordering underlying the categories is not used here, following Marchetti
(1988).

Marchetti (1988) has analyzed these data by means of TUCKALS-3
applied to quantification matrices. As quantification matrices he has chosen
the standardized versions of the ones used in MCA and INDOQUAL. In other
words, he has used the same quantification matrices as are used in MCA and
INDOQUAL, but applies weights to the variables in order to standardize them.
These weights are (mj—l)_l’z, j=1,...,m, where m; is the number of categories
of variable j. As has been noted by Marchetti and has been seen in section
10.6, this may result in a solution in which variables with a small number of
categories are better represented than the others.

In the present study the same data are analyzed by means of INDOQUAL,
and the resulting loadings and category coordinates are compared to the ones
found by Marchetti (1988). For the TUCKALS-3 analysis Marchetti (1988) has
chosen both dimensionalities (i.e., for the components of variables and for
the components of objects) equal to three. This corresponds best to choosing
the dimensionality of the INDOQUAL solution equal to three as well.

The three—dimensional INDOQUAL solution yields a function value of 2.43,
which can be seen as the inertia accounted for. Because the variables are
standardized, the total inertia in the data is equal to the number of
variables, that is, 8. As a result, INDOQUAL accounts for 2.43*100/8 = 30.4 %
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of the total inertia. Marchetti reports that the TUCKALS-3 solution accounted
for 30.8 % of the inertia. It can be concluded that INDOQUAL represents the
information in the data almost as well as TUCKALS-3 does, while INDOQUAL
uses a much simpler model.

The loadings for the variables found by the INDOQUAL solution are given
in Table 10.14. These loadings were computed as x/'S;x,
i=1..8, 1=1,.,3, where S; is the standardized version of the
quantification matrix used in MCA and INDOQUAL. Loadings >.50 are printed in
bold face.

Table 10.14. Variable loadings resulting from INDOQUAL.

comp.l comp.2 comp.3

A 0.55 0.02 0.70
B 0.13 0.10 0.02
C 0.00 0.99 0.00
D 0.23 0.26 0.18
E 0.56 0.05 0.02
F 0.24 0.05 0.03
G 0.21 0.03 0.06
H 0.21 0.12 0.00

It can be seen that only the variables A, C, and E are represented quite
well, which is the same conclusion as was drawn by Marchetti (1988). This is
about the only conclusion made by Marchetti as far as the variables are
concerned. From his plots for the variables one might conclude that the first
component mainly represents variables A and C, and to a less extent also D
and E. The second component contrasts C to thé other variables, and the third
component contrasts A to E, while the other variables are in between these
extremes. It seems difficult to give a further interpretation of these results
on the basis of the loadings alone, especially as far as contrasts between
nominal variables are concerned. A simple structure rotation might possibly
have helped here.

The loadings from the INDOQUAL solution lead to a different
interpretation. The first component of the INDOQUAL solution is highly related
to variables A and E, and can be interpreted as a component expressing the
“size of the company”. The second component only represents variable C well,

and the third component mainly represents variable A. A more detailed
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comparison of the loadings found here and by Marchetti is not feasible because
Marchetti (1988) only gave plots of the variables. In addition, it should be
noted that the TUCKALS-3 solution can be rotated by any nonsingular matrix,
hence comparing the results of the two analyses should take such rotational
freedom into account. From the plots, however, it is practically impossible to
see how such a rotation should be made.

Apart from plotting the loadings for the variables, Marchetti (1988)
also gives a plot of the category coordinates for the first two components,
and he provides a rather detailed interpretation of these results. This plot
is reproduced here (with permission from Marchetti) in Figure 10.6. The
capitals denote the variables, and the indices denote the categories of the
variables concerned. In the same plot the category coordinates for the first
two INDOQUAL components have been given after a rotation (by hand) to
maximal agreement of the two configurations. The INDOQUAL category
coordinates are given by lower case characters. The INDOQUAL coordinate
axes are also depicted in this plot, and labelled as “DIM.1” and “DIM.2”,
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Figure 10.6. Plot of the category coordinates on the dimensions 1 and 2 from
the TUCKALS (capitalized) and INDOQUAL (lower case) solutions.
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respectively. Clearly, after rotation, the configurations of category points
resulting from the two different analyses are virtually equal, and the
interpretations provided by Marchetti hold for the INDOQUAL solution as
well.

The components found by TUCKALS-3 for the objects and for the
variables are related to each other via the elements of the core matrix. In
this way TUCKALS-3 represents the data by means of a more complicated
model than INDOQUAL does. In the latter method the components for the
objects and those for the variables have a simple one-to—one relation with
each other. Therefore, it is possible to interpret the loadings by relating
them to the category coordinates and vice versa. In the present example such
an interpretation can be wused to interpret the first INDOQUAL
component as expressing the size of a company (variables A and E mainly), and
the second component as the one that contrasts the use of containers to the
use of semi-trailers (variables C and to a less extent D). On the basis of the
TUCKALS-3 solution a similar interpretation can be made, based on the category
coordinates alone, but this interpretation of the components cannot readily be
carried over to the components of the variables. Because the INDOQUAL solution
accounts for practically the same amount of inertia as the TUCKALS-3 solution
does, it seems that the former is to be preferred for the representation of

the present data.
10.8. The Sugiyama Data: Where INDOQUAL fails

INDOQUAL has been developed as an a,lterpa,tive to MCA in order to find
better representations for data in which subsets of variables form clusters of
closely related variables, while variables of different clusters are hardly
related. Such data are often characterized by rather large (generalized)
correlations within subsets of variables. However, if nominal variables do not
have high generalized correlations among each other, the data set may
nevertheless contain interesting information. This can be the case, for
instance, with preference data, e.g., binary variables indicating whether or
not a stimulus is picked out of a number of stimuli. The analysis of such data
has been described, for instance, by Heiser (1981). He gives several example
data sets, one of which, the “Sugiyama data” (Sugiyama, 1975, see Heiser,

1981, p.142) is reanalyzed here. The data consists of six binary variables

152



pertaining to religious behavior. The variables can be described briefly as A:
Do you make it a rule to practice religious conduct; B: Do you visit a grave
once or twice a year; C: Do you occasionally read religious books; D: Do you
visit shrines and temples to pray; E: Do you keep a talisman; and F: Did you
draw a fortune. For the exact wordings of the questions, as well as the data
themselves, the reader is referred to Heiser (1981, p.142).

Heiser has analyzed these data by MCA and found no interpretable results.
A different method, better adapted to the analysis of binary proximity data
(called HOMANA-BIN by Heiser, 1981), did yield good results. It turned out
that the questions could be seen to form a scale ordered as F-D-E-B-A-C. In
the present study the data have been analyzed by means of INDOQUAL. It
turned out, however, that INDOQUAL did not produce a useful representation
for this data. That is, INDOQUAL consistently yielded solutions of which
each component represented one variable almost exclusively. Using different
random starts tended to yield different solutions with almost the same
function value, but with quite different loadings.

Clearly, these INDOQUAL results are of no value whatsoever. As has been
said above, INDOQUAL is supposed to be useful when the data contains some
subsets of highly correlated variables. Such subsets might be identified by
inspection of the correlations between the variables, possibly complemented by
a PCA of these correlations. In Table 10.15 the ¢2—contingency coefficients
are given for this data. Clearly, no subsets of highly correlated variables
are present in this data. This explains the poor quality of the INDOQUAL

solutions.

Table 10.15. ¢2 - contingency coefficients among the variables of the Sugiyama
data.

A B C D E F
A 1.00
B 0.01 1.00
C 0.08 0.00 1.00
D 0.01 0.01 0.00 1.00
E 0.01 0.03 0.00 0.08 1.00
F 0.00 0.00 0.00 0.04 0.04 1.00
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10.9. Concluding remarks

In the present chapter seven example data sets have been analyzed by
some of the techniques described in the present study. There are considerable
differences between these examples, as well as between the choices that have
been made for analyzing them. Nevertheless, some general remarks can be
made.

In most of the analyses reported here PCAMIX solutions have been
compared with INDOMIX solutions. Except for the example in section 10.5, the
INDOMIX solutions did not differ much from the PCAMIX solutions, at least,
after the latter had been rotated by means of varimax. The modest differences
that could be observed, however, did reveal a systematic tendency. High
loadings in PCAMIX correspond to even higher loadings in INDOMIX, and small
loadings in PCAMIX correspond to even smaller loadings in INDOMIX. This has
been pointed out in particular in sections 10.2 and 10.3, but can be found in
other examples as well, although not always as clear.

In two cases the stability of the INDOMIX solution has been studied. In
both cases the solution appeared highly stable. Obviously, this is only partly
a feature of the method. Stability is first of all determined by the
homogeneity of a population or the representativeness of a sample. The special
choices made in the analysis may also affect the stability. For instance, the
dimensionality of the solution might be related to its stability. In the
present analyses mainly small dimensionalities have been chosen. These choices
might partly account for the stability of the solutions. Implicitly, this
reasoning gives another criterion for determining the dimensionality of one’s
solution. One might check the stability » of solutions of different
dimensionalities and choose one’s final solution only from those solutions
that are sufficiently stable.

Apart from testing INDOMIX on several data sets, in passing also the
varimax procedure for PCAMIX has been used consistently. The usefulness of
this procedure has been discussed in one case only. It has been used in every
analysis, however, and seemed very useful. Especially when one wants to
interpret the components, it is useful to have a simple structure for the
loadings.

It may seem rather inconsistent to use the varimax criterion for
rotating the MCA solution and compare this solution with INDOMIX, which
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maximizes the quartimax criterion. The reason for this apparent inconsistency
is that the varimax criterion is preferred over the quartimax criterion, for
the arguments given by Kaiser (1958), but the variant of INDOMIX that
maximizes the varimax criterion has not yet been programmed. Moreover,
INDOMIX itself has an interesting interpretation as a compromise between MCA
and PCA of quantification matrices. This interpretation does not hold for the
varimax based variant of INDOMIX.

The final example has not only been taken up to show the limitations of
INDOQUAL (and in fact also of MCA). It also shows that analyzing one’s data
by just one method may hide important aspects of the data. A more useful
strategy seems to be to use more than one of the methods mentioned in the
hierarchy, possibly even all of these. Then one should not only consider the
solutions of each of the separate analyses, but especially the larger
differences in the solutions. Together with the knowledge how the methods
presented in this study are related, one may determine whether or not the data
can be described by these methods, and if so, which is the most useful

representation of this data.
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