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2. A HIERARCHY OF THREE-WAY METHODS

Many methods have been developed for the analysis of three-way data. In
the present chapter, a number of these will be discussed. The methods
discussed here form a hierarchy. The methods in the hierarchy are related such
that while going down the hierarchy one finds a method that represents the
data by a simpler model, albeit at the cost of a poorer representation of the
variables. It should be noted that this hierarchy is an extension of a similar
hierarchy mentioned by Kroonenberg (1983, pp.49 ff). A different hierarchy of
three-way methods was described by Carroll and Wish (1974, pp.92-96). They
describe hierarchical relations between IDIOSCAL, PARAFAC2, and INDSCAL.

The three—way methods to be discussed here are all methods that can be
applied to quantification matrices. Quantification matrices will be described
in detail in chapter 3. For the purpose of the present chapter only some
notational aspects of the quantification matrices need to be mentioned. Let m
be the number of variables, n be the number of objects, and Sj, j =1,...,m,
be the n x n quantification matrix for variable j. As will be seen in chapter
3, quantification matrices can often be considered as similarity matrices
between the objects, hence the choice S; for the symbol to denote such
matrices. It should be noted that the S; matrices, being similarity matrices,
are always symmetric. The data to be handled by the three-way methods
described below consist of an » xn xm array, that is to say, of a set of m

matrices of order n x n. Figure 2.1 depicts such a data array.
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Figure 2.1. A three—way data array for similarity matrices.

In the next four sections methods for analyzing such data will be described.

In section 2.5 it will be shown how these methods form a hierarchy.



2.1. STATIS

STATIS has been developed by L’Hermier des Plantes (1976) as a method for
performing PCA on a set of quantification matrices in three steps. The first
step, called STATIS-1 here, consists of performing PCA on the matrices
S1,..»S, considered as variables. That is, STATIS-1 searches linear
combinations, Fy,...,F,, of the matrices S,...,S, that optimally account for
the matrices Sy,...,S,. In order to see how the matrices S,...,S,, can be
considered as variables, let matrix S; be represented by a vector Vec(S;)
which contains the elements of S j strung out row-wise, j = 1,...,m. Similarly,
let Vec(Fy),...,Vec(F,) be the principal components of the variables
Vec(S,),...,Vec(S,). Then, STATIS-1 can be described as the method that

minimizes the loss function

STATIS-1(F,,...,F,,C) =

m T
Jj=

1S;- Lepbull®

1 =1

I |l Vec(S;) = L e Vee(F) |° (1)

j=1 =1

over arbitrary matrices F,...,F,, and the (m x r) matrix C of loadings ¢y of
the variables on the components. Collecting the variables Vec(S,),...,Vec(S,,)
in the n° xm data matrix S, and the components Vec(F,),...,Vec(F,) in the

n® x 7 matrix F , the STATIS-1 function can be rewritten as

PCA(F,C) = | § - FC' ||*. (2)

This description of the loss function for STATIS-1 is simply a description of
the loss function for PCA (r components) on a data set S of order n’ X m,
where F contains the component scores for the n® object—pairs, and C contains
the component loadings for the variables. This method has been mentioned
earlier by Tucker (1972, pp.7-8) in developing his three-mode scaling method.

The second step of STATIS consists of defining a compromise matrix as the
first principal component (F,) of the matrices Si,...,S,,. That is, assuming
that o; gives the first principal component weight for matrix S,
J=1,...,m, then this compromise matrix is given by F, = L0455

The third step, which is called STATIS-3 here, consists of PCA of the
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compromise matrix that has been defined in the second step. It is readily

verified that PCA on matrix F;, and thus STATIS-3, is equivalent to minimizing

STATIS-3(X,A) = || gajsj - XAx' |? (3)
i=1
over the diagonal matrix A, and matrix X (n x ) subject to X'X = I,.. At the
minimum of the STATIS-3 function, matrix X will contain the compromise
component scores for the objects, and A will contain the corresponding
eigenvalues.

The strategy of analyzing a number of matrices as if they are variables
followed by a detailed analysis of the summarizing matrices has been proposed
earlier by Tucker and Messick (1963) in a related context. Tucker and Messick
have proposed to analyze the lower triangles of a number of distance matrices
by means of PCA on these lower triangles strung out as vectors of order
%n(n—l). Typically, these components are rotated to simple structure. Next,
new “distance matrices” that optimally approximate the original distance
matrices are computed on the basis of each of these principal components,
which are subsequently analyzed by means of classical multidimensional scaling
techniques. Although the Tucker and Messick method resembles STATIS in

lay—out, it clearly differs from STATIS in several respects.
2.2. TUCKALS-3

Tucker (1966) proposed various models for three-mode principal
components analysis. One of these is the model which Kroonenberg and De
Leeuw (1980) called the Tucker—-3 model. This model represents the entries
of each of the three modes by means of a smaller number of components, hence
providing three sets of components. These components are related to each
other by the so-called core matrix. In case this model is applied to

symmetric matrices S,...,5,, it can be described as

XiuXinCjtlupl (4)

| ™ 3

R P
Siwj = L
U=

P
L
1 v=1 Il=1

where 3;;,; is the model-description of element (4,i') of matrix Siy Xiu

denotes the coordinate of object i on component u, c; the loading of variable
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J on component I, and h,,; the element of the core matrix that relates the o™
and v™ components for the objects to the " component for the variables,
%, v =1,...,p, and | =1,...,7.

Fitting the symmetric version of the Tucker-3 model (4) in the least

squares sense (TUCKALS-3) comes down to minimizing the function

T
IS; - X T cftiX | (5)
1 l=1

TUCKALS-3(X,H,, ..., H,,C) =

IRSe

J

over matrices X (n x p), Hy,...,H, (p x p), and C (m x 7). Kroonenberg (1983)
has called this method three-mode scaling. According to Kiers (1989b) this
symmetric version of TUCKALS-3 can be described as a constrained variant of
PCA on the matrices S),...,5,. In order to show this, we rearrange the
elements of the matrix between | | into vectors, and use the fact that
Vec(XH\X') = (X @ X)Vec(H,), where ® denotes the Kronecker product. Then
the loss function for TUCKALS-3 can be rewritten as

m T
TUCKALS-3(X,H,,...,H,C) = T | Vec(S;) - Vec(X L eniX') ||*
Jj=1 =1
m r 2
L | Vec(S)) - L (X®X)Vec(Hy)cj |
=1

=1

I

J

I

IS~ (X ® X)(Vec Hy]...|Vec H)C'|®>.  (6)

Minimizing (6) over arbitrary matrices X (n x p), H,,...,H, (pxp), and C
(mxr) is equivalent to minimizing the PCA loss function (2) over C and
F, subject to the constraint that F (nzxr) can be written as
F=(X ®X)(Vec H,]...|Vec H,) for certain matrices X and H,,...,H, of
appropriate orders. Thus, TUCKALS-3 can be seen as constrained PCA,
where matrix C yields loadings for the variables.

Whereas STATIS-1 only gives a representation of the variables,
TUCKALS-3 also gives a representation of the objects (in X). In addition to
these object coordinates TUCKALS-3 provides measures that indicate the
interaction-relations between different components for the objects and the
variables (given in the matrices Hj,...,H,). The latter relations, however,
are difficult to interpret, because they are relations between objects

components as “viewed” by each of the components for the variables (indicated
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by the subscripts of the matrices Hy,..,H,.).
2.3. INDSCAL and INDORT

Carroll and Chang (1970) have proposed INDSCAL for analyzing a set of
distance or dissimilarity matrices. Their first step is transforming the
distances into similarities by means of the Torgerson (1958) transformation.

Next they propose to fit the similarities to the INDSCAL model, given by

r
Sij = L XaXiaCji » (7)
=1

where x; denotes the object coordinate of object i on component I, and c;
gives the loading of variable j on component I, ! =1,...,7. This model is
much simpler than the Tucker—3 model. The interpretational difficulties in
TUCKALS-3, concerning the matrices Hy,...,H,., are overcome by INDSCAL. The
INDSCAL model does not consider relations between object components and
variable components. In this model only one set of 7 components is defined.
These components can be interpreted as components for objects and variables
simultaneously, which makes interpretation of the results much easier than
interpreting the results of a TUCKALS-3 analysis. Interpreting the TUCKALS-3
results is further complicated by the fact that the solutions of TUCKALS-3
have rotational freedom. The INDSCAL model, on the other hand, does not allow

for rotation of its components. It provides unique axes.
Fitting the INDSCAL model in the least squares sense comes down to

minimizing

m
2

INDSCAL(X,Wy,...Wg) = L || S5 - XW;X" |, (8)

j=1
over an nxr matrix X of object coordinates and diagonal matrices
Wi,-.o;3Wn. In order to describe INDSCAL in terms of PCA of the n” x m matrix
S, the elements of the matrix between | || are again rearranged in vectors.
Now it is useful to note that Vec(XW;X') = Vec(Lxw;X;') = LiVec(X;x," )wjy,
where x; is the 1™ column of X, and wy is the T diagonal element of W;.
Let c;;=wj;, then INDSCAL can be described in terms of PCA on the n®xm

data matrix S as minimizing
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INDSCAL(X,C) = T || Vec(S;) — Vec(XW,X') ||
j=1

T Il Vec(S;) - £ Vec(xix/)ej I°

=1 =1

J

IS = (Vec(x,%,) | .. | Vec(x,x,))C" |1 (9)

Minimizing (9) over arbitrary X and C is equivalent to minimizing the PCA loss
function (2) over C and F, subject to the constraint that F can be written as
F = (Vec(x,X;')|...| Vec(x,X,’)) for some n x r matrix X.

In INDSCAL the constraints imposed on PCA are stronger than those for
TUCKALS-3, provided that the number of components for the objects (p) is
larger than or equal to the number of components for the variables (7). This
can be seen by verifying that INDSCAL can be considered as TUCKALS-3 with
the matrices H,,...,H, constrained such that h,, = 1 when u=v=[, and 0
otherwise, provided that p>r, (cf. Kroonenberg, 1983, p.53, where a thus
constrained core matrix is called the “three-way analogue of an identity
matrix”). Of course, the advantages of the stronger and simpler INDSCAL
model are offset by the expected loss of fit of this more heavily constrained
version of PCA.

Instead of simply minimizing (9) over arbitrary matrices X, one may
minimize (9) subject to the constraint X'X = I,. Kroonenberg (1983, p.118)
denotes this method as “orthonormal INDSCAL”. Here, it will be denoted by the
acronym INDORT. Being a constrained variant of INDSCAL, INDORT is a
constrained variant of PCA. This method is of special interest in the present

study.
2.4. SUMPCA

Levin (1966) has developed a method for the simultaneous factor analysis
of a number of data sets. His method is based on PCA of the sum of a set of
matrices, Si,...,5,,. His method is equivalent to one of the stages in Tucker’s
three mode Principal Components Analysis (Tucker, 1966). As has been shown by
Jaffrennou (1978), this in turn is equivalent to one of the stages of
Jaffrennou’s method for analyzing a three-way array. Finally, Gower (1966)

proposed to analyze a dissimilarity matrix by first applying the Torgerson
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transformation in order to obtain similarities, and next finding coordinates
for the objects by means of PCA on the similarity matrix. The latter
similarity matrix is often computed as the sum of a number of similarity
matrices expressing the similarities between the same objects in terms of
different variables. Then this method, “Principal Coordinates Analysis”, can
be seen as equivalent to the other three methods mentioned above. Because this
method comes down to performing a PCA on the sum of the similarity matrices it
is called “SUMPCA?” here.

SUMPCA can be described mathematically as minimizing the function

m
SUMPCA(X,A) = || T S;-XAX' ||

Jj=1

=m E I S; - X(m X ||2 + constant, (10)
j=1
over X (n x 1), subject to X'X = I, and over the diagonal matrix A.

From the description of SUMPCA as the method that minimizes (10) it is
clear that STATIS-3, see (3), is a weighted variant of SUMPCA. When all
weights o, ...,0, in STATIS-3 are (taken) equal, then SUMPCA and STATIS-3
coincide. Alternatively, STATIS-3 can be seen as the SUMPCA method applied to
quantification matrices o;S; instead of ;.

SUMPCA can be described as a constrained variant of PCA as follows.
SUMPCA minimizes

m
SUMPCA*(X,W) = L | 5; - XWX’ |’ (11)

Jj=1

over X and W, where W = m_lA, subject to the constraint that X is column-wise
orthonormal, and W is diagonal. Defining c¢;=w;, hence requiring that cj; be

the same for all j, and making the same derivation as for (9), we have

SUMPCA*(X,W) = || S - (Vec(x,%,')|...| Vec(x,%,))C" |>. (12)

SUMPCA is a constrained variant of PCA, in that it minimizes (2) over F
subject to the constraint that F can be written as F=

(Vec(x,x;) | ...| Vec(x,X,')) for a certain column-wise orthonormal matrix X,
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and over C subject to the constraint that all rows of C are equal. SUMPCA is a
constrained variant of PCA that is even more heavily constrained than INDORT,
because of the additional constraint imposed on C. This constraint implies
that the components do not weight the variables differentially, contrary to
INDORT and INDSCAL.

2.5. Hierarchical relations between three-way methods

As discussed above and in Kiers (1989b), all methods described here are
constrained versions of STATIS-1. The methods have been treated in such an
order that each method is a constrained version of its predecessor. That is,
in reversed order, SUMPCA is a constrained version of INDORT, INDORT is a
constrained version of INDSCAL, INDSCAL is a constrained vefsion of TUCKALS-3
(provided that in TUCKALS-3 the number of components for the objects, p, is
not smaller than r), and TUCKALS-3 is a constrained version of STATIS-1.

In Table 2.1 an overview is given of the hierarchy formed by these
methods. Each method can be seen as a method that fits a model to the data.
The data are represented by the n® x m matrix S, the model prediction by S.In
addition, the constraints imposed on the model parameters are given. In Table
2.1 two new symbols are introduced, H for H = (Vec H,|...|Vec H,), and ¢ for
the r—vector with elements w,, [ =1,...,r, for describing C = 1c’, with 1 an

m—vector with unit elements.

Table 2.1. A hierarchy of three —way methods.

additional
method model constraints
STATIS-1 S=Fc
TUCKALS-3 &= (X ® X)HC'
INDSCAL S = (Vec(xyx,')| .. | Vec(x,x,"))C"
INDORT 8 = (Vec(x,x,')| ... | Vec(x,x,"))C" XX=1I,
SUMPCA S = (Vec(x;%,')| ... | Vec(x,%,"))C’ XX=1I, C=1c
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As has been mentioned above, TUCKALS-3 only fits in the hierarchy, when
p>7, because only in that case TUCKALS-3 provides a better fit for Sy,...,5,,
than INDSCAL does. TUCKALS-3 models with p<r cannot be located in this
hierarchy.

The hierarchy given in Table 2.1 holds for any choice of quantification
matrix. In chapter 4 an overview is given of these methods for different
choices of quantification matrices for qualitative variables and for mixtures

of qualitative and quantitative variables, respectively.

2.6. Suggestions for an eclectic approach to three-way analysis of a set

of quantification matrices

Above, it has been shown that a number of well-known three-way methods
can be ordered in a hierarchy. The higher the position a method takes in this
hierarchy, the better the representation of the variables is. Simultaneously,
the higher the position a method takes in the hierarchy, the more parameters
are involved in the model, and hence the more complex the model is. The
latter statement may not be obvious for the methods that take the highest
positions in the hierarchies. That is, it may seem that STATIS-1 uses less
parameters than TUCKALS-3. However, STATIS-1 in fact fits the “full”
Tucker-3 model, that is, with p =n, as is readily verified. Thus, STATIS-1
does fit a model with more parameters than TUCKALS-3.

A larger number of parameters in a model typically makes interpretation
of the results more complex. For example, TUCKALS-3 provides coordinates for
the objects which are related to the variables in a complicated way by means
of an extra set of “core” parameters. The coordinates for the objects provided
by INDSCAL are linked in a simpler way to the components for the variables,
because every component for the variables refers to exactly one component for
the objects. In SUMPCA the components for the variables are trivialized in
that all variables have the same loadings on each dimension. SUMPCA fits the
simplest model, because the model is in fact no longer a three-way model: it
does not give a differential representation of the variables.

In order to perform a PCA of the variables, one might choose from all of
the methods above. No general statement as to which method is the best can be

made. However, the hierarchy described above might be used in order to find
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empirically which method is the most useful for describing one’s data by means
of a PCA of the variables. Obviously, the best representation of the variables
is provided by STATIS-1. However, for the purpose of interpretation of the
solution this method is rather poor, because it does not yield any description
(coordinates) for the objects that is linked to the principal components for
the variables. At the other extreme, SUMPCA only yields a good description of
the relations between the variables when these are strong. A useful strategy
might be to start analyzing one’s data by means of the method at the bottom of
the hierarchy, that is by SUMPCA. If SUMPCA yields a sufficient fit and an
interpretable solution in a reasonable number of dimensions it gives the
simplest possible representation of the data (in that number of dimensions).
If this method does not give an adequate solution one may start “climbing” the
hierarchy and analyze the data by means of the next method in the hierarchy
(with the same number of dimensions). This procedure can be repeated until one
finds a solution that adequately represents the variables and the objects, if
such a solution is available at all. Of course, decisions about “adequate”
representations, or “reasonable” numbers of dimensions will always be based on

subjective evaluation to some extent.
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3. THE CHOICE OF QUANTIFICATION MATRICES

3.1. Why use quantification matrices?

In the previous chapter a series of methods has been discussed for the
analysis of three-way data. In chapter 1 it has been mentioned that these
three-way methods can all be applied to a set of quantification matrices.
However, it has not yet been explained what a quantification matrix is, nor
why it should be used. These questions will be dealt with in the present
section. First, the possible types of variables, for which these
quantification matrices are to be defined, will be reviewed.

Variables can be distinguished according to their levels of measurement.
Although many refinements in such a distinction are possible the following
distinction will be made here. Variables are called “qualitative” (or
“nominal”) if the “scores” of the observation units (objects) on such
variables do not contain any numerical information at all. Examples of such
variables are a person’s nationality, a person’s religion, an animal’s genus,
a vegetable’s taste, etc.

Variables are called “ordinal” if the scores of objects on the variables
have a predefined ordering, possibly with ties. An object that falls in a
higher category can be said to have “more” of the aspect that is measured by
the variable. For example, the rank order score after a world championship
soccer, or a person’s preference listing of a number of food-items can be
considered as ordinal variables.

Finally, variables are called “quantitative” (or “numerical” or “interval
level”) when the scores on the variables have a numerical meaning. That is,
scores on quantitative variables do not only indicate the rank order of the
objects, but also how much the objects differ in the aspect measured by the
variable. A person’s length, an object’s volume, a tree’s number of leaves,
etc, are usually considered to be quantitative variables.

The above distinction in three types of variables may seem very strict.
In practice, however, it is often not at all clear whether a variable can be
considered to be measured at interval level or at ordinal level. Similar

ambiguities may arise among qualitative and ordinal variables. Therefore, it
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is important to note that the level of measurement of a variable is not a
given property, but a property attributed to the variable by the practitioner.
It is this person who decides at what level of measurement a variable is
considered to be measured. This choice is not only based on what kind of
variables one has under study, but also on what aspect of the variables one
wants to analyze. It can be useful, for instance, to consider variables as
“length” and “weight” as ordinal if one wants to detect nonlinear relations
between such variables.

The main purpose of the present study is to describe techniques for the
analysis of (mixtures of) variables that are considered qualitative or
quantitative variables. As has been explained above, qualitative and
quantitative variables are of a very different kind. One cannot compare scores
on a qualitative variable with those on a quantitative variable, for instance,
because these scores have completely different meanings. This implies that one
cannot calculate (ordinary) correlation coefficients between variables of
different measurement levels. It would be useful to have a means of comparing
such different variables. One way of doing so is by representing each variable
(qualitative or quantitative) by means of what is called a “quantification
matrix” (Zegers, 1986, p.26). Here, a quantification matrix is a square matrix
containing measures of similarity among the objects in terms of the variable
at hand. Because these quantification matrices are of the same order and of
the same kind (being similarity matrices between objects), one can compare
quantification matrices for different variables, regardless whether or not
they are considered at the same level of measurement. It will be explained
later why such matrices can be seen as similarity matrices. First, however, it
will be described for what purposes quantification matrices have been proposed
and how they have been used.

The idea of using quantification matrices emerged from the wish to define
“correlation coefficients” for variables of a measurement level lower than the
interval level. The term “correlation coefficient” is used here in a slightly
wider sense than usual. That is, the term is used for any type of association
coefficient that can be seen as a scalar product between two normalized sets
of scores, which do not necessarily have to be deviation scores. The
definition of correlation measures for quantification matrices that represent

the variables has been developed independently by different authors. Daniels
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(1944) has used square matrices of order n to represent ordinal variables, and
showed that for certain choices of these matrices their normalized inner
products give Spearman’s and Kendall’s rank correlation coefficients,
respectively.

Another line of research based on quantification matrices finds its
origin in the work of Escoufier (1970, 1973). He proposed the notion of
correlation coefficients (RV-coefficients) between so-called “operators”,
which are square matrices containing scalar products between certain sets of
(scores) vectors. The correlation between such operators is computed simply as
the normalized scalar product between the vectors containing all elements of
the operators in some fixed order.

Saporta (1975) used this notion of correlation coefficients for operators
(quantification matrices) in order to find correlation coefficients for
qualitative variables. A qualitative variable can be considered a set of
indicator variables. Each indicator variable indicates whether an object falls
in a category (score 1) or not (score 0). These indicator variables are
collected i an indicator matrix. For variable j this indicator matrix is
denoted as Gj, of order n xm;, and D; = G;'Gj,
m; with category frequencies on the diagonal, where n is the number of objects

the diagonal matrix of order

and m; is the number of categories of variable j. Saporta (1975) chooses as a
quantification matrix for a qualitative variable, the matrix JGij-lGj'J R
where J = (I—n_lll’) is the centering operator, and 1 is the n—vector with
unit elements. The correlation coefficient defined as the correlation between
such quantification matrices, that i, l;rSj’S'l/(trsz)V’(trS',Z)V2 with
S;=JG;D;'G;J, and $;=JGD,'G/J for variables j and I, can be seen
as a correlation between qualitative variables.

Vegelius (1973) followed the same strategy for defining correlations
between variables of low measurement level. He proposed to define correlation
coefficients for variables of low measurement level as correlations between
quantification matrices, that is, again trSj’S,/(trsz)V’(trS,Z)V’, and
called such correlation coefficients “E—coefficients”, because they represent
scalar products in Euclidean space. Together with Janson, Vegelius considered
various correlation coefficients for (mixtures of) qualitative, ordinal and
quantitative variables (e.g., Janson & Vegelius, 1978a, 1978b, 1982). The

construction of correlation coefficients on the basis of quantification
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matrices has been reviewed by Marcotorchino (1984) and Zegers (1986).

Although the use of quantification matrices was inspired by the wish to
define correlation coefficients between variables of low measurement level, in
this study quantification matrices are not used for determining correlations
between such pairs of variables, but for techniques that simultaneously
analyze a set of qualitative and quantitative variables. The idea of
simultaneously analyzing a set of quantification matrices has been given by
Escoufier (1973) as well as by Vegelius (1973), who both propose to analyze
the matrix of correlation coefficients between quantification matrices by
means of Principal Components Analysis (PCA). However, if one is not satisfied
with an analysis of the variables only, but wants to have a representation of
the objects as well, it is necessary to analyze these quantification matrices
by means of other methods. This has motivated Cazes, Bonnefous, Baumerder
and Pagés (1976) to extend Saporta’s method. As is explained in section
5.1, their method does not fully succeed in simultaneously analyzing both the
variables and the objects. Later on, D’Ambra and Marchetti (1986), see also
Coppi (1986), have suggested to use other approaches to analyze a set of
quantification matrices. In chapter 4 methods based on this suggestion are
described.

Above, it has been explained why one might use quantification matrices in
order to analyze (mixtures of) qualitative and quantitative variables. In the
next sections, a number of possible quantification matrices will be discussed,

both for qualitative and for quantitative variables.
3.2. Quantification matrices for qualitative variables

The quantification matrices, denoted by S j» to be proposed in the present
section can all be described in terms of the notation given above. A full
account of all quantification matrices that have been proposed in the
literature is beyond the scope of this study. The following summary of
quantification matrices (Table 3.1) is based mainly on the correlation
coefficients for nominal variables mentioned by Zegers (1986, pp. 50—-53). Some
quantification matrices have not been given explicitly in the form as they are
described in Table 3.1, but only implicitly by means of the correlation

coefficients that are based on them. Therefore, in addition to the
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quantification matrix itself, the corresponding correlation coefficients are

given, if available.

Table 3.1. Quantification matrices for a gqualitative variable.

quantification matrix corresponding
correlation coefficient

L. GGy

2. JG;G;'J T-index (Janson & Vegelius, 1978a)
3. G jGj’—n_lll' J-index (Janson & Vegelius, 1978a)
4. G;D; Gy

5. JGjD]-_lGj'J T? coefficient (Tschuprow, 1939)

6. 2G;G;'-11'-1 Gamma coefficient (Hubert, 1977)

Some of these quantifications will now be discussed in more detail. That
is, first the simplest quantification matrix, G;G;', will be shown to be a
similarity matrix. Next, the fourth and fifth quantification matrices will be
discussed, because these quantification matrices have often been adopted in
practice, and will also be adopted in the second part of this study. The
second, third, and sixth quantification matrices are not discussed, but can be

interpreted in analogous ways.
3.2.1. The quantification matrix G;G;’
The elements of the quantification matrix G,G; are given by
1 if objects i and i' belong to the same category

Siinj = (1)

0 if objects i and i’ belong to different categories,

Clearly, s;;,; is a measure of similarity between objects i and i’ in terms of

variable j. That is, objects in the same category are seen as similar
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($::;=1) and objects in different categories as dissimilar (s;.;=0).
This (binary) similarity measure is very simple, and does not take into

account category frequencies or numbers of categories.
3.2.2. The quantification matrices G;D,'G, and JG;D,'G,'J

The quantification matrix Gij_lGj’ is more complicated than the one
discussed in the previous section. Let the category to which object i

belongs be indicated by g, then

]‘g_1 if objects i and i’ belong to the same category
Siin = (2)

0 if objects i and ' belong to different categories,

where f, is the gth diagonal element of D;, and thus t;he frequency of category
g of variable j. Clearly, s;,; can again be seen as a similarity measure,
because its value is higher when objects fall in the same category (and hence
are more similar) than when they belong to different categories. In contrast
to the previous similarity measure, (1), the similarity between objects that
fall in the same category now does depend on the number of objects that fall
in this category. The more objects belong to this category, the less similar
two objects that fall in this category are considered to be. Hence this
measure in a way corrects for chance, because the higher the frequency of a
category, the higher the probability that two objects would fall in it if the
categories were statistically independent.

Although the similarity measure (2) seems to be attractive, it leads to a
quantification matrix which has certain disadvantages. That is, the
correlation between two qualitative variables, trS;S)/(trS,%)"2(trS,%)%,
with S; and S; as defined by (2) is always greater than zero, even when the
variables are statistically independent. This follows from the fact that S;
and S; are positive semi-definite (p.s.d.), hence tr S;'S; > 0 with equality
if and only if the column-spaces of S ; and ) are orthogonal. However, this
equality can never be attained, because matrices Gij"lGj' and G,D,AIG,' both
contain the vector 1 in its column-space, and hence the column-spaces of S N

and S; can never be orthogonal, as has been pointed out for instance by
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Saporta (1975, p. IV-11). Saporta proposed to remedy this by centering the
quantification matrix row— and column-wise. This leads to the quantification
matrix JGjD]-"Gj'J . It can be verified that the correlation between the thus
defined quantification matrices is Tschuprow’s T?~coefficient (Tschuprow,
1939), which is a normalized version of the xz measure. It is well-known that
x2 =0 when two variables are statistically independent. Hence, the
correlation between the thus defined quantification matrices for two
statistically independent variables is 0. The elements of the quantification
matrix can again be seen as similarities between the objects. They are now

given by

fg'l— n”" if objects i and i’ belong to the same category
Sii'j = (3)
-n7if objects i and i’ belong to different categories.

These similarities differ from those of (2) in that they are reduced by n
This leads to negative similarities between objects that belong to different
categories, and slightly reduced, but always positive, similarities between

objects that fall into the same categories.
3.3. Quantification matrices for quantitative variables

For quantitative variables several quantification matrices can be used.
Saporta (1976) and Janson and Vegelius (1982) both use the quantification

matrix

SJ = n_lzJ'Zj' (4)

where z; is the vector of standardized scores on variable j. This
quantification matrix is closely related to the scores that are ordinarily
used in the analysis of quantitative variables. It can be interpreted as a

similarity measure by noting that
n_1|z,-j| | z;.;| if the scores of i and i’ have the same sign

Siinj = (5)

-1 . ) ., . .
—n"" | 2| | 25| if the scores of i and i have different signs.
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That is, two objects that have the same sign are seen as similar to a certain
extent, while two objects with different signs are seen as dissimilar to a
certain extent. The degree of (dis)similarity depends on the absolute values
of the scores. Clearly, this measure of similarity only partly takes into
account that objects with almost equal scores have higher similarity than
objects with very different scores. The following similarity measure
emphasizes this aspect of the similarity between two objects.

Gower (1971) proposed the following measure of similarity between objects

with respect to a quantitative variable:

Siij =1 = lhij=hijl/p; (6)

where h;; is the score of object i on quantitative variable j, and pj is the
range of this variable. Clearly, this measure expresses the similarity between
objects 7 and ¢, that is, the smaller the difference between the scores of
the objects the higher the similarity. It is of interest to note that the
matrix S; with elements given by (6) is p.s.d., as Gower (1971) has shown.
Many other quantification matrices might be chosen for quantitative
variables, for instance, by taking the outer product-moment of any of the
vector quantifications for quantitative variables that are mentioned by Zegers
(1986, pp. 34—41), among which the outer product-moment of the vector of raw

scores and that of deviation scores.

3.4. Quantification matrices for ordinal variables

Although this study focuses on the analysis of qualitative variables and
of mixtures of qualitative and quantitative variables, some attention needs to
be paid to the analysis of ordinal variables. Defining a quantification matrix
for ordinal variables allows one to analyze ordinal variables together with
qualitative and quantitative variables.

As has been mentioned earlier, Daniels (1944) proposed to use certain
particular square matrices as a kind of quantification matrices for ordinal
variables. He has shown that Spearman’s and Kendall’s rank correlation
coefficients can be formulated as normalized inner products between such

quantification matrices. However, the “quantification matrices” he proposed
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are skew—symmetric matrices, while the methods described in chapter 2 apply
to a set of symmetric matrices only. Therefore, these “quantification
matrices” are not discussed here.

A very simple approach to handle ordinal variables is to treat the scores
on such variables in the same way as quantitative variables. That is, one can
use the quantification matrices that have been mentioned for the quantitative
variables above with the ordinal scores considered as numerical scores (see
Zegers, 1986, pp. 41-43). On the other hand, it is conceivable that other
quantification matrices can be found that better describe the similarities
between objects based on an ordinal variable. For instance, in the case of
complete rank orders, that is, without ties, one may consider matrices with
a simplex structure, that is, matrices with equal diagonal elements, and
off—diagonal elements the size of which decreases as their distance from the
diagonal increases. A particularly simple special case of such a simplex
matrix is a tridiagonal matrix with unit elements on the diagonal and the two
“by-diagonals”, and zero elements elsewhere. This matrix could be
generalized for the case of ties such that the similarity between objects in
the same or neighbouring categories is set to 1, and the similarity between
objects in more distant categories is set to 0. Obviously, these are only

some examples of choices for quantification matrices for ordinal variables.
3.5. Normalization and weighting of quantification matrices

In methods that analyze a set of quantification matrices simultaneously,
the quantification matrices may affect the solution differently. That is, some
quantification matrices may affect the solution more than others, because they
are “measured on a different scale”. In order to prevent this one may weight
the variables such that each affects the solution to the same extent. This
situation parallels that of ordinary PCA, where variables can have different
variances. For that reason, they are often normalized to constant sums of
squares before a PCA is performed.

In order to normalize quantification matrices one needs to have an
expression for how much a variable affects the solution. This can be obtained
from the total sum of squares of the elements of the quantification matrix.

Hence, in order to normalize a variable one may weight the quantification
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matrix by the inverse of the square root of the sum of squares of its
elements.

Instead of weighting the variables such that they affect the solution
equally one might want to do the opposite. That is, one might want to find a
solution that maximally accounts for one variable, and analyzes the other
variables only in the second place. This might be achieved by giving a large
weight to that one variable and small weights to the others. This procedure
has been proposed by Nishisato (1984) as “forced classification”, in the MCA
context. Yet another weighting procedure has been proposed by Cazes et al.
(1976). They proposed to analyze a set of qualitative variables by means of
MCA after weighting the quantification matrices JGij'lGj'J for the variables
by means of the elements of the first eigenvector of the (correlation) matrix

of Tschuprow’s T* coefficients between the variables.
3.6. Conclusion

Above, a number of quantification matrices for qualitative and
quantitative variables have been described, and it has been indicated how
these can be modified by normalizing or weighting them. These are only some of
the quantification matrices that can possibly be used. In the present study no
attempt is made to find the best choice for quantification matrices. However,
some considerations that can be used for making this choice are discussed in
section 4.4. For the purpose of the present chapter it suffices to mention
that any quantification matrix may be used to represent a variable, as long as
it is a symmetric matrix of order n x n, that gives, in some way, similarities
between the objects with respect to the variable concerned. The choice of the
quantification matrix should be suitable for the data and research question at
hand. This might imply that one has to invent similarity matrices oneself, or
adopt ones that have been developed and presented in the abundant literature
on similarity measures. On the other hand, one might adopt the most frequently
made choices for quantification matrices, as made for instance by Saporta
(1976), or adhere to the (technical) advices given by Janson and Vegelius
(1982) or Zegers and Ten Berge (1986) for choosing quantification matrices

that result in correlation coefficients with certain technical advantages.
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4. A REVIEW OF THREE-WAY METHODS FOR THE ANALYSIS
OF QUALITATIVE AND QUANTITATIVE TWO-WAY DATA

In the present chapter methods will be reviewed that result from applying
the three-way methods that have been discussed in chapter 2 to the
quantification matrices that have been discussed in chapter 3. It will be
indicated which methods have been discussed elsewhere, and which methods

appear to be new.

4.1. Three-way methods applied to quantification matrices for
qualitative variables

In the present section a review is given of methods that result from
applying the three-way methods discussed in chapter 2 to quantification
matrices for qualitative variables (discussed in section 3.2). In Table 4.1
the three—-way methods are crossed with the quantification matrices. The
quantification matrices have been given without the j-indices for convenience.
Division by “RSSQ”, that is, by the square root of the sum of squares of the
elements of the quantification matrix, indicates the normalized version of a
quantification matrix. The cells that pertain to methods that have been
discussed in the literature are filled with the names of those methods or
their references.

The cross—classification of three—way methods and quantification matrices
in Table 4.1 contains many empty cells. This is a consequence of the fact that
the application of three—way methods to quantification matrices has not been
studied in much detail yet, and as far as it has been studied, mostly the
quantification matrix JGij'lG]-’J has been used. The methods in the first
column, STATIS-1, come down to applying PCA to the quantification matrices
belonging to the rows concerned. In many of their papers, Janson and Vegelius
studied some aspects of these methods. In addition, they made a comparison of
PCA of J-indices and Tschuprow’s T?—coefficients by means of an example data
set (Janson & Vegelius, 1978b).

As has been described in chapter 2, PCA of quantification matrices for

qualitative variables has also been developed in France, following Escoufier
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Table 4.1. A cross - classification of methods for qualitative variables.

method
quant. STATIS-1 | TUCKALS-3 |INDSCAL INDORT SUMPCA
matrix
. Marchetti
GG (1988)
JGG'T PCA of Marchetti
RSSQ T-indices (1988)
GG'-n"'11' | PCA of
RSSQ J—-indices
-1, Marchetti
GD G (1988) INDOQUAL MCA
-1, PCA of Marchetti
JGD G'J ¢2—coef. (1988) INDOQUAL MCA
JGD'G'J | PCA of Marchetti Kiers
TRSSQ | TP—coef. (1988) (1989c¢)
2GG'-11'-1 | PCA of H.’s
RSSQ Gamma,

(1970, 1973). In fact, the methods denoted here as PCA of T—indices and PCA of
Tschuprow’s T?—coefficients have been proposed independently by Saporta
(1975). The PCA of ¢2~coefficients (product-moment correlations for 2 x 2
contingency tables) has been proposed by Escoufier (1980).

Applying TUCKALS-3 to quantification matrices has been considered by
Marchetti (1988). He mentions explicitly the quantification matrices G;G; and
Gij_lGj'. In addition, he suggests that centering these matrices row— and
column-wise, as well as scaling them, might be useful. That is, indirectly, he
also suggests using JG,G;'J and JG]-Dj_lGj’J , and normalized versions of these.

The third column of Table 4.1 is left empty, because applications of
INDSCAL to a set of quantification matrices appear not to have been considered
in any detail yet, although D’Ambra and Marchetti (1986) hint at it, and Kiers
(1989c) also mentions it as a potentially useful method.

The application of INDORT to a set of quantification matrices has been
described by Kiers (1989c), for the normalized versions of the quantification

matrices JG]-Dj'lG]-’J - He mentions that other quantification matrices might be
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chosen as well, but does not treat those in any detail. However, the
application of INDORT to the (non-normalized) quantification matrices
JG]-Dj_lG]-'J will be discussed in chapter 5, called “INDOQUAL” there. It will
be noted that the INDOQUAL solution is closely related to that of INDORT
applied to the quantification matrices Gij_lGj’.

The last column contains only MCA. It is well-known that MCA can be seen
as applying SUMPCA to a set of quantification matrices JG]-D]-_IG]-’J or
Gij—lGj'. The application of SUMPCA to quantification matrices for
qualitative variables does not seem to have been considered in the literature.
However, in the case of binary variables, SUMPCA has been applied to
quantification matrices. Gower (1966) has discussed the application of SUMPCA
to quantification matrices G;G; for binary variables, albeit it not
explicitly in this form. The methods for correspondence analysis of binary
data discussed by Fichet (1986) and Fichet and Gbegan (1986) can be seen as
particular variants of Gower’s method. They have shown also that these methods
are variants of ordinary MCA.

Apart from looking at the columns of Table 4.1 it is interesting to look
at the rows of Table 4.1 as well. That is, a row of Table 4.1 in fact
describes a hierarchy of methods for the analysis of qualitative variables, as
follows from the fact that the three-way methods themselves are related
hierarchically (see section 2.5). One of these hierarchies is the one for the
quantification matrix JGij_lGj'J . That is, it can be concluded that MCA is a
constrained variant of INDOQUAL (chapter 5), which is in turn a constrained
variant of TUCKALS-3 applied to these quantification matrices (Marchetti,
1988). Finally, the latter method is a constrained variant of PCA of the
quantification matrices JGij"lGj'J , that is, Escoufier’s method of PCA of
¢2—coefficients.

Another interesting hierarchy is the one for the normalized version of
the quantification matrix JGJ-Dj_IGj’J . According to this hierarchy the method
proposed by Kiers (1989c) is a constrained variant of one of the methods
worked out by Marchetti (1988), which in turn is a constrained variant of PCA

of Tschuprow’s T?~coefficients.
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4.2. Three-way methods applied to quantification matrices for mixtures

of qualitative and quantitative variables

In case one has a mixture of qualitative and quantitative variables one
can again consider the application of the three-way methods from chapter 2 to
the quantification matrices from chapter 3. The situation is a little more
complicated than in the previous section, because now one has to choose
quantification matrices both for the qualitative and the quantitative
variables, which yields a large number of possible combinations. In fact one
might make a three-way-table crossing quantification matrices for qualitative
variables with quantification matrices for quantitative variables and with
three—way methods. However, it seems that the quantification matrix n'lz]-zj’
is the most prevalent quantification matrix for quantitative variables. For
this reason, only the slice of this three-way cross—classification that
pertains to the quantification matrix n"lzjzj' for the quantitative variables,
is given. The resulting two-way cross—table is given in Table 4.2. This second
cross—classification can easily be related to the cross-classification given
in Table 4.1, because the same three-way methods are crossed with the same
quantification matrices. One might incorporate Table 4.1 as one slice of the
three-way cross-table of quantification matrices for qualitative variables by
quantification matrices for quantitative variables by three-way methods.
Therefore, in the sequel reference is only made to one cross—classification
which comprises methods for mixtures of qualitative and quantitative variables
of which methods for merely qualitative variables are special cases.

The first column is again filled with a number of methods that have more
or less explicitly been proposed by Janson and Vegelius (e.g., 1978a, 1982).
That is, Janson and Vegelius discussed the correlation coefficients that are
involved in these analyses, both for correlation between two qualitative
variables, and for correlation between a qualitative and a quantitative
variable. The methods are denoted here by the names Janson and Vegelius gave
to the corresponding indices for correlation between a qualitative and a
quantitative variable. An example of what is denoted here as “PCA of
CP-indices” has been given by Janson and Vegelius (1982). Saporta (1976) also
mentions the possibility of performing a PCA of mixed variables by means of

PCA of what are called ZP-coefficients here.
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Table 4.2. A cross - classification of methods for qualitative and
quantitative variables.

method ! !
quant. STATIS-1 .ITUCKALS-3 INDSCAL INDORT SUMPCA
matrix 1 .

GG '

JGG'J PCA of !
RSSQ SP-indices

GG'-n"'11' | PCA of
RSSQ CP-indices , : X
Gple ? | INDOMIX | PCAMIX

JGD'G'J  INDOMIX | PCAMIX

JGD'G'J | PCA of

RSSQ ZP—coef. i
|

!
s . _1 e e |
|
!

. Kiers(1988)

| 26G-11-1
R

The last column contains a method called PCAMIX in the present
study. This method is a straight—forward generalization of PCA and MCA, such
that it can handle mixtures of qualitative and quantitative variables. It has
been proposed by many different authors independently, with slight variations,
under names like Partially Optimal Scaling (Nishisato, 1980, p.103-107), or
“Simultaneous treatment of qualitative and quantitative variables in factor
analysis” (Escofier, 1979). This method is also contained as an option in
PRINCALS (De Leeuw & Van Rijckevorsel, 1980). These methods have not been
presented as applications of SUMPCA to quantification matrices, but it is
readily verified that they can be written as such. For more details on these
methods the reader is referred to chapter 7.

The other cells in the last column of Table 4.2 are left open. However,
the application of the Gower (1966) method to similarities based on mixtures
of qualitative and quantitative variables is likely to have been considered
for many different similarity measures. Gower (1971) proposes his general

association coefficient explicitly for the purpose of analyzing mixtures of
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qualitative and quantitative data. This similarity measure has been used in a
discriminant analysis context by Cuadras (1989). As far as quantitative
variables are concerned, both Gower and Cuadras use the quantification matrix
defined by (6) in chapter 3. Therefore, these methods do not fit into the
cross—classification of Table 4.2, but occur in a different slice of the
three-way cross—classification that might be made.

Kiers (1988) has examined the application of INDORT to the normalized
version of the quantification matrix JGJ-D]-—IGJ-'J for qualitative variables,
but, in a practical example, he uses the non-normalized version. The latter
method will be studied in detail in chapter 7, and is called “INDOMIX” there.
Kiers (1988) mentions that other choices of quantification matrices might be
made, and also that other methods might be used, like TUCKALS-3 and INDSCAL

but does not work these out.

K

As in Table 4.1, each row of Table 4.2 describes a hierarchy of three-way
methods. That is, PCAMIX can be seen as a constrained variant of INDOMIX,
which in turn is a constrained variant of PCA of the corresponding
quantification matrices (that is JG]-D]-_IGj’J for a qualitative variable and
n'lzjzj' for a quantitative variable). The latter method comes down to PCA of
a “correlation”-matrix of ¢2—coefficients for pairs of qualitative variables,
squared product-moment correlations for pairs of quantitative variables, and

nz—coefficients for pairs of one qualitative and one quantitative variable.
4.3. Limitations of the given review

Above, a review has been given of methods for the analysis of mixtures of
qualitative and quantitative variables, or sets of merely qualitative
variables. It is by no means claimed that this review is exhaustive. The
methods discussed here describe a class of methods that can be seen as
applications of three-way methods to quantification matrices. One limitation
of the review is that not all possible quantification matrices have been
mentioned. Another limitation is that other three-way methods exist, that
might be used for the analysis of a set of quantification matrices. The fact
that only some three-way methods have been mentioned in Tables 4.1 and 4.2 is
merely a matter of choice among the most familiar methods. This choice was

partly based on the fact that the methods mentioned here could easily be seen
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to form a hierarchy. Other hierarchies are available as well, like the
hierarchy mentioned by Carroll and Wish (1974).

Apart from the fact that only some three-way methods have been
mentioned, a more important limitation of the review given here is that many
methods for the analysis of qualitative variables cannot be considered as
three-way methods applied to quantification matrices. The cross—
classification does not comprise, for instance, the methods proposed by
Domenges and Volle (1979), Escofier (1984), Lauro and D’Ambra (1984), Ter
Braak (1986), Yanai (1986), Van der Heijden (1987), and Sabatier (1987), which
treat the variables asymmetrically. The applications of three-way methods to
quantification matrices can treat variables asymmetrically as well, by giving
some variables a larger weight than others, as discussed in section 3.5. In
the case of MCA, this procedure is equivalent to Nishisato’s forced
classification method (Nishisato, 1984). It is not clear, however, whether or
not such methods yield results comparable to those of the methods discussed
above.

Apart from the fact that the above review does not comprise the methods
that treat variables asymmetrically, it does not contain all “symmetric”
methods that have been developed for qualitative variables either. It does
not, for instance, comprise the methods for multivariate analysis of
qualitative (or mixed) variables developed by Young, Takane and de Leeuw
(1978), Di Ciaccio (1986), Meulman (1986), Van Rijckevorsel (1987), Greenacre
(1988) and Van der Burg (1988). Apart from these, methods for the analysis of
qualitative variables in the linear structure analysis approach (for instance,
Muthén, 1984) do not fit into this review either. The review can be said to be
more or less complete, however, in that it seems to cover all methods that are
known to form a compromise between the PCA-of-variables approach as
proposed in the work of Janson and Vegelius, for instance, and the
PCA-of-categories—and—objects approach of PCAMIX. If one wishes to perform
a PCA of qualitative or mixed variables, then one has to decide whether one
wants to perform PCA of the variables or of the categories and objects,
because both of them at the same time is impossible. If one does not want to
settle for either of them, one can use one of the compromise methods provided
here, in order to achieve both objectives partly. Then it remains to choose

the quantification matrix to be used, a choice which has not received much
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attention in the literature. In most cases one uses PCAMIX or related
techniques for a PCA of mixtures of qualitative and quantitative variables,
and MCA for a PCA of sets of qualitative variables. Thereby, one implicitly
chooses one’s quantification matrix. Although it is well-known that the
quantification matrix used in MCA provides MCA with nice properties, it is
by no means certain that using this quantification matrix yields the method

adapted best to one’s data.
4.4. How to choose one’s method in practice

Above, a large number of methods for the analysis of qualitative and
quantitative variables have been discussed. In addition, the idea of applying
three-way methods to quantification matrices offers a practically unlimited
number of new methods. There seems to be no ground for preferring one of these
methods over all others. Empirical research might yield some comparative
information on these methods, although it is not likely that conditions could
be determined under which one of the methods is superior to all others. In the
absence of empirical evidence the choice of the method is to be made by the
practitioner, that is, on an ad hoc basis. In order to make such a choice a
number of guidelines can be given that serve to clarify some implications of
certain choices. These will be discussed now.

First of all the practitioner has to choose the quantification matrix
that is to be used. In section 3.6 some remarks have been made concerning this
choice. Having chosen one’s quantification matrices, the next question to be
answered is whether or not one wants to weight the variables in some way,
including normalizing the variables. This question is difficult to answer,
especially when one uses mixtures of qualitative and quantitative variables. A
useful strategy might be based on the fact that the sum of squares of the
elements of a quantification matrix indicates the (main) effect a variable has
on the solution. That is, apart from the effect variables have on the solution
because they are related more or less strongly (which might be called an
interaction effect), there is an effect caused entirely by the size of the
elements of the quantification matrix, and this is called the “main effect”
here. One strategy one can adopt is to normalize the variables, thus ensuring

that the main effects of the variables are equal, as is standard practice in

36



PCA. On the other hand, one might consider a qualitative variable to be more
informative as it contains more categories. Then it seems desirable that the
more categories a variable has, the more it affects the solution (in the sense
of the main effect described above). Hence, in that case it would be better
to use the non-normalized quantification matrices, the sums of squares of
which are often directly related to the numbers of categories.

Although the above procedure may work for the analysis of merely
qualitative variables, for the analysis of a mixture of qualitative and
quantitative variables one cannot simply use this strategy, because one
cannot compare a qualitative and a quantitative variable in terms of the
numbers of categories they have. That is, when one decides to use
non-normalized quantification matrices for the qualitative variables, one
still has to decide what weights to attach to the quantitative variables. In
one way, quantitative variables seem to be far more informative than
qualitative variables, simply because of the fact that they make a finer
distinction between the objects. If this interpretation of the informativeness
of the variables seems appropriate for the data at hand, one may attach a very
high weight to the quantitative variables, for instance, such that it has the
same main effect as the qualitative variable with the highest main effect. On
the other hand, one may consider a qualitative variable as a variable that has
come about by combining several “latent” dimensions. For instance, one might
consider a variable like “political preference” to be a combination of
dimensions such as “conservative versus liberal” and “denominational versus
non-denominational”. In that case, it would be better to view a qualitative
variable as a variable with more information than a quantitative variable,
which therefore is to have more effect on the solution. A simple choice in
that case would be to normalize quantification matrices for quantitative
variables to unit sums of squares. This corresponds to the effect of a binary
variable (that is, a qualitative variable with two categories) when it is
quantified by JGij'IGj’J . This is one of the decision problems which might
be alleviated when comparative empirical results on these two strategies are
available.

Apart from the choice of a quantification matrix, one has to choose the
three—way method to apply to the quantification matrices. If there is no a

priori reason for using one and only one of the three~way methods from chapter
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2, then a useful strategy might be to use several of them, and decide
afterwards which method yields the best interpretable description of the data.
In making such decisions, at least two considerations have to be borne in
mind. First, it is important to note that STATIS-1 can give the best
representation of the variables only at the cost of giving no representation
at all of the objects. If one is not interested in the representation of the
objects at all, then this might be the best method to use. However, as soon
as one wants to have descriptions of both objects and variables, then
STATIS-1 is no longer useful. The second consideration is that there is a
trade—off in the adequacy of the description of the variables and the
complexity of the model that is used. A strategy might be to choose between
the different methods by choosing that method that is the lowest in the
hierarchy, and hence the simplest, that still gives a reasonable
representation of the variables, as has been suggested in section 2.6.

The guidelines given above only partly help someone who is to analyze
qualitative or mixed variables by means of PCA. Obviously, many problems of
choice between methods in the above review are yet to be investigated. It has
been the aim of the present section, however, to indicate what questions can

be posed, and how one might answer these.
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