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5. INDORT FOR QUALITATIVE VARIABLES (INDOQUAL)

5.1. Introduction

In chapter 4 a review has been given of methods for the analysis of
qualitative and quantitative variables, based on applying three-way methods to
a set of quantification matrices for the variables. This idea has first been
worked out for the particular case of the analysis of qualitative variables by
Kiers (1989c). He considered the application of INDORT on quantification
matrices S; = (mj—l)"”JGij'lGj’J , j=1,.,m. In the present chapter a
different choice of quantification matrices is made. That is, the application
of INDORT to non-normalized quantification matrices S; = J GJ-D]-_IG 5J will be
discussed. In the sequel this method is called “INDOQUAL” (INDscal with
Orthonormality constraints applied to quantification matrices for QUALitative
variables). In the present chapter parts of the results given by Kiers (1989c)
are repeated (adapted to the different choice of a quantification matrix), and
some additional results on this method are considered.

As has been mentioned in chapter 1, two different types of methods are
available for PCA of qualitative variables. The first type of method is PCA of
quantification matrices, which comes down to performing PCA of the matrix of
correlations between the variables. This method aims at optimally representing
the variables, whereas it does not give coordinates for the objects at all.
Cazes, Bonnefous, Baumerder and Pagés (1976) extended the method for PCA
of qualitative variables proposed by Saporta (1975). Their method does
provide object coordinates. However, the object coordinates found in their
method are based only on the first principal component of the variables. Hence
it can be concluded that PCA of quantification matrices does not adequately
find coordinates for the objects.

The second type of method for PCA of qualitative variables is mainly
represented by Multiple Correspondence Analysis (MCA). This method can be
seen as PCA of the categories and objects, but does not necessarily represent
the variables well. If one’s main interest is in the representation of
qualitative variables and one does not need any information on how the

relations between variables are reflected in relations between objects and
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categories one might be satisfied with the representation of the variables by
the first type of method, PCA of quantification matrices. On the other hand,
MCA should be used if one is mainly interested in representing the categories
and the objects. Clearly, both methods are incomplete in that they lack either
an optimal representation of the objects (PCA of quantification matrices), or
an optimal representation of the association between the variables (MCA). In
section 4.1 it has been shown that INDOQUAL can be seen as a compromise
between PCA of quantification matrices (using ¢2—coefficients) and MCA. In the
present chapter it will be shown in a different way that INDOQUAL can be seen
as such a compromise, and some of its implications will be discussed. In
addition, some properties that are well-known for MCA are shown to hold for
INDOQUAL too. In a final section it is shown that INDOQUAL has some relations
with a method proposed by Saporta (1979). First, however, INDOQUAL will be

described.
5.2. INDORT for qualitative variables (INDOQUAL)

In chapter 2 the three~way method INDORT has been described as the
method that finds matrices of object coordinates X (nxr) and diagonal

matrices W; (7 x 7) such that the loss function

m
O(X, Wiy W) = T Il S; = XWX |° (1)
j=1
is minimized over X and W,,...,W,, subject to X'X =1I,. The problem of
minimizing (1) over X and W,...,W,,, subject to X'X = I,., can be simplified as
follows. In order to minimize o over W; for fixed X, one only has to minimize

IS; —XWjX’”2 overW;, j = 1,...,m. This term can be expanded as

IS5 = XWX |* = tr S;* + | X'S;X - W, |- tr X'SXXSX.  (2)

The right hand-side of (2) only contains W;in its second term, which, is
minimized by choosing W ; as Diag(X'S;X).

Having found the solution for minimizing o over W,,...,W,, in terms of X R
one can express ¢ as a function to be minimized over X only, by substituting

W; = Diag(X'S;X) for every j. This results in
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m
o(X)= T |I'S; - XDiag(X'$,;X) X' |*

m m
= ptrS; - I trS;XDiag(X'S;X) X" (3)
=1 j=1

Obviously, minimizing o(X) over X subject to X'X =1, is equivalent to

maximizing

f(X) = L tr X'S;X Diag(X'S;X) (4)

1

N3

J

over X subject to X'X = I,. It is useful to note that f(X) can equivalently be

expressed as

1(X) = )"5 tr [Diag(X'S;X)]*

Jj=1
m T 2
= ¥ L (XSx), (5)
j=1l=1

where x; denotes the I** column of X.

Kiers (1989c) uses the algorithm proposed by Ten Berge, Knol, and Kiers
(1988) for maximizing f(X), subject to X'X = I,. This algorithm becomes
problematic when n is large. In chapter 9 a modification of this algorithm is
described which does not depend on the size of n.

Kiers (1989c) proposed to use the normalized quantification matrix
S;= (mj—l)_‘/zJGij_lGj'J . This has been done in order to facilitate comparing
INDORT with PCA of Tschuprow’s T?—coefficients (Saporta, 1975). However,

using the non-normalized quantification matrices,

-1 ’
P; = JG,D;"'G}J (6)

does not jeopardize the possibility of comparing INDORT and PCA of
quantification matrices. This can be seen as follows. In Table 4.1, PCA of
Tschuprow’s T?—coefficients and the method proposed by Kiers (1989c) are in
the same row, being applications of three-way methods to the same
quantification matrices. Similarly, PCA of ¢2—coefficients (Escoufier, 1980)

and INDOQUAL are in the same row, implying that hierarchical relations between
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these methods exist, just as those between PCA of Tschuprow’s T?—coefficients
and the method proposed by Kiers (1989c). In addition, comparing INDOQUAL
and MCA is, in fact, easier than comparing MCA and the method proposed by
Kiers (1989c), because MCA and INDOQUAL are in the same row of Table 4.1.

In section 4.4 some remarks have been made about whether or not to use
normalized quantification matrices. In the specific case of INDORT applied to
quantification matrices for qualitative variables, using normalized
quantification matrices may yield a solution that is dominated, to a certain
extent, by variables with small numbers of categories, particularly, by
dichotomous variables. An example and an explanation for this are given in
section 10.6. It should be noted, incidentally, that normalizing the
quantification matrices has no effect whatsoever on the INDORT solution when

the variables have equal numbers of categories.

5.3. INDOQUAL as a compromise between MCA and PCA of tpz—coeff icients

INDOQUAL can be interpreted in a number of different ways. It will be
shown here that INDOQUAL can be interpreted as a method that optimally
represents the variables (as PCA of quantification matrices does) while
retaining a clear link with the representation of the objects. First, it is
useful to describe PCA of ¢2—coefficient.s (Escoufier, 1980) in mathematical
terms.

As has been remarked in section 4.1, PCA of ¢2—coefﬁcients can be seen
as PCA of the quantification matrices P;= JGij'lGj'J considered as
variables. That is, the matrices P; can be strung out row-wise into
column-vectors Vec(P;), and PCA can be performed on the resulting data
matrix. It is well-known that PCA maximizes the sum of squares of loadings of
the variables on the components. In general, a loading is a signed length of
the projection of a variable on a component, expressing the amount of inertia
of the variable accounted for by the component. Usually, the loadings in PCA
are product-moment correlations. PCA of ¢2—coefficients can be seen as a kind
of “raw” PCA, that is, it is a PCA of non-normalized variables. In this case
the “loading” of variable J on component ! is given by tr F i'P;, where the
(n xn) matrix F; is obtained from Vec(F;), the " principal component of

the vectors Vec(P,),...,Vec(P,). Hence PCA of ¢’—coefficients can be
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described as maximizing the function

(tr FyP;)°, (7)
1

s

m
g(Fh"')Fr) = E
j=11

over the 7n x m matrices F;, [=1,...,7, subject to the constraint
Vec(F,)'Vec(F,) = tr Fi'F}, = &, , where § denotes the Kronecker symbol.
The function maximized by INDOQUAL is closely related to the function
maximized by PCA of ¢2—coefﬁcients, as can be seen as follows. INDOQUAL has
been shown to maximize (5), which upon substitution of P; for S; can be

rewritten as

f(X) = I
j=11

[ e B

m T
(xPx)" = T I (tr xxP))’, (8)
1 j=11=1

over matrix X, subject to X'X = I,. Maximizing g(F,,...,F,) over Fy,...,F,,
subject to the constraint tr F;'F;, =&y and subject to the additional
constraint F; = X;X,, is equivalent to maximizing f(X) over X, subject to the
constraint tr(xX;'x;.X;.’) = &y,. The latter constraint can be reformulated
as  tr(xx;'x;x;’) = (x,'x,,)2 = éy. This in turn is equivalent to
X'X =1I,., which shows that, when F;=x;x;’, the constraints tr F;'F, = &,
and X'X = I,. are equivalent. As a consequence, maximizing g(Fy,...,F,) over
F,...,F,, subject to the constraint tr F;'’F;, = &y, for all pairs [ and !,
and to the additional constraint F;=x;X;” for all [, is equivalent to
maximizing (8) over X, subject to X'X =1I,. Hence INDOQUAL can be
interpreted as PCA of ¢2—coefﬁcients subject to the additional constraint
Fr=x%.

An advantage of INDOQUAL over PCA of ¢2—coefficien‘cs is that, whereas in
the latter the components that are found cannot immediately be interpreted in
terms of the objects, this problem is overcome in INDOQUAL. This is due to the
constraint imposed on the “components”, Fi,...,F,, for the qualitative
variables. The constraint F; = x;x, implies that for every component of the
variables there is one vector X; of coordinates for the objects. Therefore, in
INDOQUAL the components solution is directly linked to a solution for object
coordinates on the same number of dimensions as one has chosen for the
components of the variables. A representation of the categories is immediately

supplied by means of the centroids of the object coordinates of the objects
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that score in a category.

As far as comparison of INDOQUAL and MCA is concerned, one finds that
INDOQUAL yields a representation of the qualitative variables that is better
than the one given by MCA, because the MCA solution satisfies the same
constraints as are imposed on the components in INDOQUAL, and INDOQUAL
yields the best possible representation of the variables, subject to these
very constraints. This also follows immediately from the fact that MCA can
be seen as SUMPCA on the quantification matrices P;, and that SUMPCA is a
constrained variant of INDORT, as has been explained in chapter 2.

In conclusion, INDOQUAL can be seen as a method that optimally represents
relations between the qualitative variables, and simultaneously yields a
representation of the objects and the categories that is linked to the
representation of the variables. Clearly, INDOQUAL is a compromise between
PCA of ¢’~coefficients and MCA, in that it performs a PCA of the variables
(but subject to additional constraints) on the one hand, and yields
coordinates for the objects (like MCA does) on the other hand.

Although INDOQUAL and MCA clearly differ in terms of the objectives they
have, the methods do have certain properties in common. One of these is

discussed in the next section.
5.4. Trivial solutions

A well-known property of MCA is that, when MCA is seen as finding the
object coordinates as the eigenvectors of [;S; = }:jG]-Dj_IGj', one always finds
one so-called trivial axis of object coordinates (e.g., Gifi, 1981, p.94).
That is, E]-G]-Dj_lGj' always has an eigenvector 1, associated with the largest
eigenvalue, regardless of the data. In order to avoid such a solution, one may
obtain the object coordinates from the first r eigenvectors of ):jJGij'lGj'J ,
which are precisely the first r non~trivial eigenvectors of )_“,jGij_lG]-’.

In INDOQUAL the same phenomenon is observed. That is, INDORT applied to
the matrices G]-Dj_lGj' yields one trivial axis, and the same (non-trivial)
axes as those of INDORT applied to J GjD]-_lG]-’J . This phenomenon has occurred
consistently in practice, but a mathematical proof is not available. It can be
proven, however, that, if the trivial vector emerges, the remainder of the 7+1

dimensional solution gives an r—dimensional solution for the centered case.
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5.5. The interpretation of the results of an INDOQUAL analysis

The results of an INDOQUAL analysis can be interpreted in a way highly
similar to that of MCA. The difference in interpretation should be that the
different methods stress different aspects. That is, whereas MCA stresses
optimal representation of the categories, INDOQUAL stresses optimal
representation of the variables.

First of all, we have the diagonal elements of the matrices W;. These
can be interpreted as the loadings of the qualitative variables on the
components. Note that these loadings are always nonnegative, due to the fact
that W; = Diag X'S;X, and S; is positive semi—definite. This might seem to
restrict the quality of these loadings, but, considering that relations
between qualitative variables cannot sensibly be expressed in terms of
negative correlations, the nonnegativity of these loadings merely reflects the
inappropriateness of negative correlations for qualitative variables (Janson &
Vegelius, 1982).

The loading of variable j on component [ is given by x;'S;x;. This
measure is identical to what is called “discrimination measure” by Gifi
(1981). It is readily verified that this is in fact the nz—coefficient between
the qualitative variable j and the (quantitative) component {. The maximal
value of 772 is unity. The total inertia of a qualitative variable is given by
tr sz = (m;-1), hence, when variable j has more than two categories, the
total inertia of this variable is larger than 1, and it can never be accounted
for completely by means of one component. This might seem to be a
disadvantage, but in practice this poses no problems. The fact that a variable
can never be accounted for completely by a component can be understood by
noting that a variable may in fact incorporate several different relations
between categories, which cannot be captured in one dimension.

For the interpretation of a component it is useful to note that the
“loading” is one if and only if the component perfectly discriminates the
objects in terms of the categories to which they belong. That is, it is one if
and only if objects that belong to the same categories have the same scores on
that component. Therefore, high loadings of certain variables on a component
imply that the component discriminates the objects well in terms of the
categories of the variables concerned. In order to see which categories are

particularly well discriminated, it is useful to compute the mean scores of
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the components in each of the categories of the variables. These are given by
the elements of Y, = Dj_lGj'X, j=1,...,m.

In addition to the W;, we have the object coordinates matrix X. These
coordinates represent the objects in a low-—dimensional space, taking into
account the main relations between the qualitative variables.

Finally, we have an overall value for evaluating the quality of the
solution. To this end, we use the proportion of inertia accounted for of the
quantification matrices P;. This proportion is obtained as the maximal value
of f(X) (cf.(8)), divided by the total inertia. The total inertia of matrix P;
is equal to (m;-1), hence the overall total inertia is equal to (Lmj—m).

Therefore, the proportion of inertia accounted for is given by

(x, 'ijz)2
1

m
L
j=1

oS

1

(L jmj—m)

5.6. A relation of INDOQUAL with a method proposed by Saporta

Above, INDOQUAL has been described as an alternative to MCA. This is by
no means the only alternative to MCA that has been considered in the
literature. One of the alternatives to MCA greatly resembles INDOQUAL, as will
be shown here.

Saporta (1979) has described several techniques for analyzing qualitative
variables. The objectives of these techniques are to search weights for the
variables such that they yield an optimal (weighted) MCA solution, in one or
more dimensions. One of his methods consists of maximizing the first
eigenvalue of };a;P;, subject to Z]-oé = 1. This is equivalent to maximizing
X'Y joiP X over o and X, subject to ):]-oz§ =1 and x'x = 1. As he shows, the o,
j=1,..,m, that maximize this function are given by o=
x’ij/():j(x’ij)z)’/’. As a result, his method comes down to maximizing
Li(XP%)*/(L;(x Pjx)?
equivalent to maximizing Zj(x’ij)Z, subject to x'x = 1. Hence this method is
equivalent to INDOQUAL, with 7 = 1.

Saporta (1979) has generalized his method to obtain more than one

)2 = (L;(x'P;x)%)", subject to x'x = 1. Clearly, this is

dimension. For the case of more than one dimension he proposed to maximize
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El/\l(E]Ot]P]) = E,xl'():jaij)x, = tr X'(EJOZJP])X7 where /\l() denotes the

" eigenvalue of the matrix between brackets. The solution for o is now

J
given by oy = tr X'P;X/(L; (tr X'PJ-X)z)V’. Then his method comes down to
maximizing T;(tr X'P,X)*/(L; (tr XP;X)")2 = (L;(tr X'P;X)*)”2. Clearly,
maximizing this function over column-wise orthonormal X for r > 1 is not
generally equivalent to maximizing the function }:j):,(x,'ijl)z, as INDOQUAL
does.

The above comparison of INDOQUAL to the Saporta (1979) methods leads to
another interpretation of INDOQUAL. As follows from the above, in case r =1,
INDOQUAL can be interpreted as the method that finds those weights for the
variables that yield the best one-dimensional (weighted) MCA solution. When
r > 1, a similar interpretation for INDOQUAL can be given. That is, INDOQUAL
can be seen as the method that simultaneously finds weights wy for the
variables and the components such that each component can be seen as a kind of
one—dimensional weighted MCA solution, with the different MCA-solutions
constrained such that they are mutually orthogonal. The weights for the
variables differ for the different components. When the loadings are close to
zero or one, INDOQUAL can be seen as a method that combines several one—
dimensional MCA solutions on several subsets of variables. These subsets are
defined by the variables that load high on a component. Therefore, INDOQUAL
may be a particularly useful alternative to MCA for data with two or more

subsets of closely related variables.
5.7. Discussion

In the present chapter, INDOQUAL has been described as a method for PCA
of qualitative variables which does not only yield loadings for the variables,
but also object coordinates that are linked to the loadings of the variables.
It has been shown that MCA is less suitable for such a purpose than INDOQUAL.
However, as has been discussed in section 4.4, the choice of a method should
not only be based on its adequacy in representing the information in one’s
data. Another measure for the quality of a method is parsimony of the model.
As described in section 2.6, there is a trade—off between parsimony of the
model and fit of the model. In general, a useful strategy seems to choose the
simplest model that provides a sufficient fit for the quantification

matrices.
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Apart from the above considerations in choosing between MCA and
INDOQUAL, one might see the fact that INDORT finds “unique axes” as
a particular advantage of INDOQUAL over MCA. That is, the INDOQUAL
solution is determined completely, whereas the MCA solution is determined
up to a rotation only. In chapter 8, however, a procedure for rotating the
MCA solution so as to maximize similar criteria as maximized by INDOQUAL is
discussed. In this way, “unique axes” can be determined for the MCA solution
as well.

In section 5.1 it has been remarked that the object coordinates provided
by the Cazes et al. method are not very useful, because they are based only on
the first principal component of the variables. It is possible, however, to
adapt the Cazes et al. method such that it provides object coordinates
dimensions for each of the principal components. In a different context
D’Alessio (1988) describes such a procedure. He also remarks that this method
treats the different aspects of the data asymmetrically. In the present
context this implies that the representation of the variables receives most
attention, while the representation of the objects is of only secondary
importance. In addition, the loadings found by the original PCA are related to

the corresponding object coordinates in a less direct way than is the case in
INDOQUAL.
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6. SOME ADDITIONAL COMPARISONS OF MCA AND INDOQUAL

Above, a variety of methods for the analysis of qualitative variables has
been discussed. Among these methods, INDOQUAL has received special attention
in chapter 5. As has been mentioned in chapter 5, INDOQUAL uses the same
quantification matrices as MCA does (implicitly). In chapter 5 INDOQUAL has
been described as a compromise between Escoufier’s method for PCA of
¢2—coefficients (Escoufier, 1980) and MCA. As far as the interpretation of the
methods is concerned, only one difference has been discussed in chapter 5. In
the present chapter, some further differences and equivalences in terms of the
objectives of the methods will be discussed. That is, a number of different
descriptions of the methods will be given, showing that the methods differ

from each other in more than one respect.

6.1. A comparison of MCA and INDOQUAL in terms of PCA of qualitative

variables

A well-known interpretation of MCA is the following. Each qualitative
variable can be considered as a quantitative variable when all categories of
the variable receive certain quantitative values. This process of assigning
quantitative values to the categories of qualitative variables results in
so—called “quantified variables”. For the first MCA component, the variables
are quantified such that the first eigenvalue of the matrix of correlations
between the quantified variables is maximized over possible quantifications
(not to be confused with quantification matrices) of the variables. The object
scores corresponding to this solution are proportional to the mean of the
quantified variables. MCA finds a second component by searching other
quantifications for the variables that yield a vector of object scores (again
proportional to the mean of the quantified variables) which is orthogonal to
the first object scores component, and maximally accounts for the inertia of
the corresponding quantified variables. Subsequent components are found in a
similar way.

Gifi (1981, p.103-104) has shown that the first MCA component in fact
yields the one—dimensional PCA solution for the set of optimally quantified

variables. Gifi (1981) has also mentioned that subsequent MCA components do
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not generally yield the one-dimensional PCA solutions for the sets of
variables quantified according to these components. Therefore, it seems that
MCA can be interpreted as a method for PCA of the (optimally quantified)
variables only as far as the first component is concerned.

The problem of interpreting MCA as a PCA of optimally quantified
variables seems to be that in MCA each single variable is represented by a
number of different quantitative variables (that are seen as quantified
versions of the original qualitative variables). Obviously, this takes into
account the diverse information possibly present in a qualitative variable to
a certain extent. However, each qualitative variable is represented by the
same number (7) of quantitative variables, whereas it is conceivable that for
some variables that carry more information more quantitative variables would
be necessary, while for other variables representing them by r quantitative
variables might be superfluous. This problem is remedied by De Leeuw and Van
Rijckevorsel (1988) who propose a variant of MCA that allows for different
numbers of quantified variables (called copies) to represent different
variables. However, for both MCA and the variant of MCA proposed by De Leeuw
and Van Rijckevorsel, to each quantification corresponds a different
correlation matrix, and hence one cannot see these methods as methods
performing just one PCA of quantified variables. In this way it becomes also
rather awkward to interpret the so—called “discrimination measures”, x;'Pyx,
j=1..,m, l=1,.,r, as squared loadings of quantified variables on the
components as is done in MCA (Gifi, 1981, p. 96-97). As far as only one
component is concerned, this interpretation is warranted, but as soon as
higher dimensional solutions are considered the “squared component loadings”
cannot be compared over different components, because, in fact, different
quantitative variables (that is different quantifications of qualitative
variables) are involved. Therefore, MCA cannot generally be seen as a method
for PCA of (optimally) quantified variables.

A method which is directed more clearly at PCA of qualitative variables
(or any type of variables) has been proposed by Young, Takane & De Leeuw
(1978), under the name PRINCIPALS, which is also an option of the PRINCALS
program (De Leeuw and Van Rijckevorsel, 1980). In this method the qualitative
variables are each replaced by one “quantified variable” and this is done in
such a way that the resulting PCA solution explains as much variance as

possible. Obviously, this method does allow for interpretation in terms of a
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PCA of quantified variables, unlike MCA. It has a different problem, however,
in that it replaces each qualitative variable by only one quantified variable.
In case the qualitative variables at hand can be considered as quantitative
variables that have for some reason (like measurement problems) been
polytomized, then PRINCIPALS may be a useful method, assuming that it
retrieves the correct quantifications for the variables (which is still a
matter of doubt, because the only criterion on which the search for
quantifications is based pertains to the correlations of a variable with the
other variables, thus depending on which other variables are included in the
analysis). However, for any variable that contains information which cannot be
captured by means of one quantitative variable, the PRINCIPALS approach
seems to be inappropriate.

A PCA technique that does take into account all the information present
in the variables, and does not loose information by considering only one (or
even several) quantification(s) of the qualitative variables is what has been
called PCA of quantification matrices. As has been mentioned in chapter 5,
however, this type of method can adequately represent only the variables. The
objects are not represented. In chapter 5, INDOQUAL has been proposed as an
alternative method for PCA of qualitative variables, which optimizes the sum
of squared loadings, just as PCA does, but with respect to certain constraints
in order to allow for a representation of the objects.

Neither of the methods MCA, PRINCIPALS, and INDOQUAL adequately
takes into account all a method for PCA of qualitative variables should take
into account. INDOQUAL differs essentially from MCA and PRINCIPALS,
however, in that it does not first reduce the information of a qualitative
variable by means of one or several optimal quantifications. INDOQUAL tries to
take into account the variables as a whole, as is done in PCA of
quantification matrices. The PCA objective has been relaxed in order to have
component scores for the objects that are related to the components for the

variables.

6.2. MCA as a method for finding an approximate solution for INDOQUAL

In the previous section a first difference in interpretation of MCA and
INDOQUAL has been given, focusing on the idea that the methods should give a

PCA representation of the variables. In the present section MCA is considered
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as a method for finding an approximation of the solution of INDSCAL on the
quantification matrices. This gives another comparison of MCA and INDOQUAL.

As has been described earlier, INDORT is a constrained variant of
INDSCAL (Carroll & Chang, 1970). INDSCAL minimizes the loss function

m
SXW e W) = T 11 S; = XWXI, (1)
j=1
over arbitrary X and diagonal matrices Wy,...,W,. That is, INDSCAL fits the
INDSCAL model

S; 2 XWX, (2)

for j=1,..,m, to the data in the least squares sense, where = denotes a
least squares approximation.

As mentioned by Carroll and Chang (1970), the INDSCAL model has been
proposed earlier by Horan (1969). The latter, however, did not consider
least squares fitting of this model. Instead, he proposed to find the object
coordinates as follows. If the model fits the data perfectly, that is, if S; =
XW;X', for j=1,..,m, then T;5; = L;XW;X' = X(LW;)X'. It follows that, in
that case, the object coordinates matrix is given by a transformation of the
matrix containing the eigenvectors of ¥;5;, because these span the column- and
row-spaces of };5;. Hence the matrix with eigenvectors gives “the location of
the points in the normal space” (Horan, 1969, p.144), where “normal space”
refers to the space for the object coordinates. Horan realized that this
solution is determined up to a linear transformation only. As Carroll and
Chang (1970) point out, this undeterminacy is problematic in that it overlooks
one of the key features of INDSCAL, that is, uniquely oriented axes. In
addition, Carroll and Chang’s procedure solves for the weight matrices W,
whereas Horan ignores the estimation of the W; matrices. Furthermore, Horan’s
approach is based on the assumption of perfect fit of the INDSCAL model, which
does not hold in practice. Therefore, least squares fitting of the INDSCAL
model, as done by Carroll and Chang (1970), is to be preferred.

Horan’s approach, however, is of more than only historical interest. If
the S; matrices are the quantification matrices P; = JG]-D]-'IG ;J, then Horan’s
approach comes down to MCA. That is, MCA can be seen as a method giving an

approximate solution to INDSCAL applied to these same quantification matrices.
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Because the MCA object coordinates matrix is column-wise orthonormal, this
automatically provides an approximate solution for INDOQUAL (that is,
INDORT applied to the P; matrices) as well. This provides a first
comparison between MCA and INDOQUAL. It is of interest to mention here that
a similar result was found by Marchetti (1988) in comparing TUCKALS-3 for
qualitative variables and Tucker’s original approximate solution for the
Tucker-3 model (Tucker, 1966).

Horan (1969) has not been the only one who used the eigenvectors of I;S;
as a representation of the INDSCAL object coordinates. Escofier and Pages
(1983) mention that the results of their Analyse Factorielle Multiple (AFM),
which is also based on the eigenvectors of };S; and comes down to MCA when
applied to quantification matrices S;=P; = JGJ-D]-'IGJ»’J , can be interpreted
as those of an INDSCAL analysis. Later on, Escofier and Pages (1984) motivate
this interpretation by considering their method as an alternative to the least
squares fitting of the INDSCAL model. Instead of maximizing the sum of squares
of certain projections, as INDSCAL does in their point of view, AFM maximizes
the sum of these projections (nonsquared). That is, let s; = Vec(S;), where
Vec(.) denotes the matrix between brackets strung out row—wise into a column,
let wj be the T diagonal element of W, let wy,...,wy be collected in the
vector w;, and let x; be the 1™ column of X. Then the INDSCAL model can be

written as

T
Sj Z VeC( E 'U)ﬂxlxl’)
=1

= (Vec(x;%,") | ...| Vec(x,x,))w;. (3)

This model can be recognized as a multiple regression model. Finding w; comes
down to projecting s; on the space spanned by the columns
Vec(x;X,'),...,Vec(x,X,’). It can be stated that INDSCAL maximizes over X
the sum of squared lengths of the projections of s; on the column-space
spanned by the vectors Vec(x,X,'),...,Vec(X,X,").

On the other hand, AFM maximizes over column-wise orthonormal X the
; on each of the
vectors Vec(X;X;'),...,Vec(X,X,’) separately. One may assume, without loss of

sum of the nonsquared projection lengths of the vectors s

generality, that the vectors X,,...,X, are normalized to unit length. Hence

the vectors Vec(X;X;'),...,Vec(X,X,’) have unit length also. Then the length
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of the projection of s; on the vector Vec(x;x,) is given by wj=
s; Vec(xx;') = x;'S;%;. Thus AFM maximizes T;Tw; = x;'S;%; = Ljtr X'S;X.

Escofier and Pageés (1984) claim that the difference between AFM and
INDSCAL is only a difference between maximizing a sum of squared projection
lengths versus maximizing a sum of nonsquared projection lengths. There is an
important additional difference between AFM and INDSCAL, however. In
INDSCAL the sum of squared lengths of projections on the subspace spanned by
the vectors Vec(x;X;'),...,Vec(x,X,’) is maximized. That is, apart from the
difference of maximizing a sum of nonsquared versus squared projection lengths
between AFM and INDSCAL, there is also a difference between the projections
that are of interest in the different methods. In AFM projections on the
individual axes are considered, whereas in INDSCAL projections on the
subspace spanned by these axes are considered. This essential difference
between INDSCAL and AFM seems to have been overlooked by Escofier and
Pagés (1984). Maximizing either a sum or a sum of squares of lengths of
projections on the individual axes (as AFM does) does not seem very
interesting. When more than one axis is taken, the projection of a vector ( S5)
on the subspace as a whole should be considered for the approximation of the
vector s; by a vector in a subspace.

It is of interest to note that the orthonormally constrained variant of
INDSCAL, INDORT can be interpreted in both of the above senses, that is, for
INDORT the sum of squared lengths of projections on the individual axes is
equal to the sum of squared lengths of the projections on the subspace spanned
by the axes, due to the orthonormality of x,...,X,, and hence of
Vec(x;%,'),...,Vec(x,X,’). INDORT can hence be considered both as the method
that maximizes the sum of squared lengths of projections on the subspace, and
as the method that maximizes the sum of squared lengths of projections on the
individual axes. It should be noted, however, that the orthonormality of the
axes in AFM does not likewise guarantee that the sum of nonsquared lengths of
projections on the individual axes is equal to the sum of nonsquared lengths
of projections on the subspace spanned by these axes.

It can be concluded that Horan (1969) and Escofier and Pageés (1984) both
propose to use the MCA coordinates as an approximate solution for the object
coordinates for INDOQUAL, but that they have different motivations. In spite
of their efforts to show the similarity in objectives of MCA and INDOQUAL,

their papers served in fact to highlight the differences between the methods.
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Nevertheless, Horan’s observation that, when the INDSCAL model fits the data
perfectly, the object coordinates matrix is a transformation of the matrix of
eigenvectors of };5; is of considerable importance, and its implications will

be discussed in the next section.

6.3. Equivalence of MCA and INDOQUAL when the INDORT model fits

the quantification matrices perfectly

As has been mentioned in the previous section, when the INDSCAL model

perfectly fits the matrices S;, j=1,...,m, one has

.): S;=X( '2 W;)X'. (4)

Now suppose that X in (4) is column~wise orthonormal. Then the matrices S; are
not only fitted perfectly by the INDSCAL model, but also by the INDORT model.
When an eigendecomposition of };S; is given by ¥;S; = KAK', then it follows
from (4) that, assuming that the elements of YW ; are different, X = K, and
L;W¥;=4,up to a permutation. Hence, when the quantification matrices
P;= JG]-D]-_lGJ-'J are fitted perfectly by the INDORT model (in r
dimensions), then the object coordinates given by INDOQUAL are the same as
those found by MCA (in r dimensions). It should be noted that the MCA
object coordinates do not even differ a rotation from the INDOQUAL object
coordinates, hence the MCA components themselves (and not a rotation of
them) give the unique INDOQUAL components.

Of course, the above result in itself is useless in practice, because the
INDORT model will, typically, not fit the quantification matrices in a
reasonable number of dimensions. In fact, the INDORT model does not
necessarily provide a perfect fit of the quantification matrices in the
maximal number of dimensions. However, when the data do not fit the INDORT
model perfectly, but merely to a great extent, the INDOQUAL solution and the

MCA solution are still likely to be similar.
6.4. A comparison of MCA and INDOQUAL in terms of xz—distances

The last comparison to be made here between INDOQUAL and MCA is based
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on the following useful, though not prevalent interpretation of MCA, in terms
of Xz—dista.nces (Benzécri et al., 1973, see Gifi, 1981, p. 134). That is,
Benzécri et al. (1973) describe Correspondence Analysis (CA) as the technique
that yields an approximation of so-called Xz—distances between rows (or
columns, which will be disregarded here) of a contingency table. Let the ht"
and A" rows of a contingency table of order 7 x c be given by r; and ry,,
with elements 7,y and 7.4, respectively, g=1,...,c. Let the row-marginals
of the contingency table be given by 7, A =1,...,r, and let the column-
marginals be given by fg, g =1,...,c. Then, the xz—dista.nce between two rows

of a contingency table can be defined by

(Tha/Th =~ Tnog/Th: )2, (5)

d_o(ry,Ty,) =
Xz(h,h) 1 7,

c
g=
(e.g., Gifi, p. 134), where the constant grand total n has been omitted from
the usual definition. Heiser and Meulman (1983) have shown that CA
approximates these x —distances by means of a weighted Principal Coordinates
Analysis (Gower, 1966). It is well-known (e.g., Lebart, Morineau & Tabard,
1977) that MCA can be seen as correspondence analysis of the superindicator
matrix G = (Gj|...| Gy). As has been shown by Meulman (1986, p. 87), MCA can
be seen as a (nonweighted) Principal Coordinates Analysis on the Xz—distances
(which are equivalent to the Mahalanobis distances she mentions) defined
between the rows of the super-indicator matrix. This Principal Coordinates
Analysis first applies the Torgerson transformation to the matrix of
distances (in the present case X2 distances), yielding ):jJGij_lGj'J, see
Meulman (1986, p.87), where the constant m™" has been dropped for convenience,
and subsequently finds the best low-rank approximation of this matrix by

minimizing

m
ouX)=| L JG,D; G} - XX |, (6)

j=1
where X is an arbitrary matrix of order nxr. It is well-known (Eckart &
Young, 1936) that this minimization problem is solved by finding the
eigendecomposition of EjJGij_lGj'J = KAK’, and choosing X = K,A,"2, where
the subscript r indicates that only the first r eigenvalues and eigenvectors

are taken. Clearly, the problem of minimizing (6) over arbitrary X is

58



equivalent to that of minimizing

m
oo X W)= | L JG;D;GyT - XWX |, (7)
j=1
over diagonal matrices W, and column-wise orthonormal matrices X. This, in

turn can be shown to be equivalent to minimizing

* " _ *
o(X W)= T || JG;D;'G/T - XWX |7, (8)
j=1
over diagonal W* and column-wise orthonormal X. Minimizing (8) can be
interpreted in a similar way as minimizing (6) has been interpreted. That is,

let the Xz—distance based on variable j between objects ¢ and i’ be given by

mg 2
47 () = v Bigi ~ Rigi)” (9)

g=1 9
where h;y; denotes the “score” of object i on the indicator variable for
category g of variable j, and f, is the frequency of category g of variable j.
Then MCA can be seen as the method that performs a “simultaneous” Pfincipal
Coordinates Analysis on the xz—distances defined between the objects, for
each of the variables. This is done by requiring that the object coordinates
to be found be the same for all variables.
Now INDOQUAL can be seen as the method with almost the same objective.
That is, INDOQUAL minimizes

m

(X, WyyesWp) = T || JG;D; 'G5 = XWX |1%, (10)

j=1

over diagonal matrices Wy,...,W,,, and over X subject to XX = I,.. Both MCA
and INDOQUAL can be seen as methods for simultaneous Principal Coordinates
Analysis of the x2~dist.ances between the objects, defined for all variables
separately. They differ in the way they handle the simultaneousness of the two
analyses. That is, in MCA the object coordinates are required to be the same
for all variables, whereas in INDOQUAL the object coordinates may differ in
column-scaling of the coordinates. This difference implies that INDOQUAL has
a greater freedom in fitting the xz—dista,nces, and hence will better

approximate these distances for all variables jointly. This implies that
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INDOQUAL may need fewer components to represent the distances between the

objects than MCA does.
6.5. Discussion

In the previous sections some comparisons have been made between MCA
and INDOQUAL. It has been emphasized which are the advantages of INDOQUAL
over MCA. Obviously, MCA also has certain advantages over INDOQUAL. One of
these is that the MCA solution is nested, whereas the solution of INDOQUAL is
not. That is, the one-dimensional solution of INDOQUAL is not necessarily
contained in the two—dimensional solution of INDOQUAL, the two—dimensional
solution is not contained in the three-dimensional solution, etc. As a
consequence, one cannot simply choose between an r and an r+1-dimensional
INDOQUAL solution by looking at the extra dimension in the latter.

It may be seen as another advantage of MCA that it can be interpreted as
an ordinary PCA of the indicator variables, that is, it gives optimal
representations of the objects and the categories. The present study, however,
focuses on methods that optimally represent the objects, the categories, and
the variables simultaneously. Obviously, data analysis of qualitative
variables may sometimes focus on the categories (and then MCA or variants of
MCA seem most useful), while at other times it may focus on the variables, or
on the objects, in which cases a PCA representation can be given by any of the
methods described in the present study, and in particular by INDOQUAL.

Meulman (1986) has described MCA as a method for representing
xz—distances between objects, and has offered an alternative to MCA which is
better adjusted to this objective of represeriting distances. That is, her
method aims at finding a representation of the objects in which the distances
between the objects are approximated in the least squares sense. In a similar
way, alternatives to INDOQUAL might be constructed. That is, one may use a
method for least squares fitting of the distances given according to the
INDSCAL model to the Xz—dista,nces between the objects, as defined by each of
the variables. In doing so, however, one has to part with the objective of

optimally representing the variables.
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7. INDORT FOR A MIXTURE OF QUALITATIVE AND
QUANTITATIVE VARIABLES (INDOMIX)

7.1. Introduction

In chapter 5 it has been mentioned that PCA of qualitative variables can
be distinguished in two types, one focusing on the categories and the objects,
the other on the variables. It has also been shown that INDOQUAL is a
compromise between these two approaches in that it yields the best possible
representation of the variables which also yields a representation of the
objects. Ordinary PCA can be applied only to quantitative variables, and
INDOQUAL can be applied only to data sets that consist exclusively of
qualitative variables. For the exploratory analysis of mixtures of qualitative
and quantitative variables a different approach is needed. Kiers (1988) has
discussed some existing methods for such data and proposed a new method as
well. The present chapter is based for a large part on this paper.

The exploratory analysis of a mixture of qualitative and quantitative
variables seems to have received far less attention in the literature tha.n the
exploratory analysis of qualitative variables. Here three types of methods can
be distinguished. The first type was proposed by Young, Takane and De Leeuw
(1978), see also Tenenhaus (1977). Their method, PRINCIPALS, has already
been mentioned in section 6.1 for the case where only qualitative variables
are involved. In the case of a mixture of qualitative and quantitative
variables each qualitative variable is “optimally quantified” by means of one
quantitative variable, and an ordinary PCA is performed on the complete set of
quantified qualitative variables and variables that were quantitative already.
As has been explained in section 6.1, this method may work well when the
qualitative variables can be fully captured by means of one quantified
variable, for instance when the qualitative variables can be seen as
“polytomized” quantitative variables. However, if this is not the case, much
information is lost when each qualitative variable is replaced by only one
quantitative variable. Because our attention goes to methods that take into
account the possibility of more-dimensional information in qualitative
variables, this type of methods is ignored in the present study.

The second type of methods generalizes Multiple Correspondence Analysis
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(MCA) to the effect that it can handle mixtures of qualitative and
quantitative variables. These generalizations of MCA have been proposed
independently by many authors (De Leeuw, 1973; Escofier, 1979; Nishisato,
1980, pp.103-107; De Leeuw & Van Rijckevorsel, 1980). Although the methods
slightly differ in the way in which quantitative variables are transformed,
all methods essentially use the same approach to handle qualitative variables.
That is, let G; be the indicator matrix for variable j, when variable j is a
qualitative variable, and let h; be the vector of scores on variable j, when
variable j is quantitative. Then all methods mentioned above can be described
as PCA of the supermatrix containing the columns of the matrices JG]-D]-'V2 for
qualitative variables and (transformations of) the vectors h; for quantitative
variables. The particular method that performs PCA of the supermatrix
containing the columns of the matrices JG]-D]‘_V2 for qualitative variables and
the vectors of standard scores, z;, divided by n"2, for the quantitative
variables will be denoted here as PCAMIX.

As has been mentioned in chapter 5, the very fact that MCA performs a
PCA of the complete set of indicator variables for all qualitative variables
causes it to yield a non—optimal representation of the qualitative variables.
In fact, MCA yields an optimal representation of the categories of the
qualitative variables, not of the variables themselves. Analogously, the
generalizations of MCA for analyzing mixtures optimally represent only the
categories of the qualitative variables, rather than the qualitative variables
themselves, because they use the same approach for the qualitative variables
as MCA does.

The third type of methods is PCA of quantification matrices for mixtures
of variables. These methods have been discussed in section 4.2. Just as PCA
of quantification matrices for qualitative variables, PCA of quantification
matrices for mixtures does not provide a representation of the objects. On the
other hand, as has been shown above, PCAMIX and its variants do not provide
an optimal representation of the variables. In the present chapter it is
shown that INDORT applied to certain quantification matrices yields a
compromise between these two types of methods. Apart from this it is shown

that this method has some interesting properties in certain special cases.
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7.2. INDORT for the analysis of a mixture of qualitative and quantitative
variables (INDOMIX)

In chapter 3 it has been mentioned that various quantifications can be
chosen for qualitative and quantitative variables. In the present chapter the
same quantification matrices are chosen for qualitative variables as in
chapter 5. That is, if the jth variable is a qualitative variable the

quantification matrix chosen here is given by

-1~

If the jth variable is a quantitative variable the quantification matrix

chosen here is given by

-1 ,
Q] =N Zij . (2)

It should be noted that these quantification matrices differ from those chosen
by Saporta (1976) in his method for PCA of quantification matrices only in
that Saporta (1976) uses the normalized version of P;. In the sequel, INDORT
applied to quantification matrices S; chosen as P; or Q;, j=1,...,m, will be
denoted as “INDOMIX” (INDscal with Orthonormality constraints applied to

quantification matrices for MIXed variables).

7.3. INDOMIX as a compromise between PCA of nz-coef ficients and
PCAMIX

INDOMIX can be interpreted in a number of different ways. It will be
shown here that it optimally represents the variables (as a PCA technique
does) while retaining a clear link with the representation of the objects.
More precisely, it will be shown that INDOQUAL is a compromise between one of
the methods for PCA of quantification matrices for mixed variables, “PCA of
nz—coefficients”, and PCAMIX. First, PCA of nz—coefficients will be described.

The PCA of the quantification matrices S § taken as Pj or Qj can be
considered as PCA of a certain “correlation matrix”. For a pair of qualitative
variables the “correlation” is defined as the ¢’—coefficient, for a mixed pair

the nz—coefficient is used, and for a pair of two quantitative variables the
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squared product-moment correlation is used. This method is called PCA of
nz—coefficients, named after the correlation—coefficient used for a pair of
mixed variables.

PCA of nz—coeff icients maximizes the function

(tr F'S;)%, (3)
1

g(Fla"'aFr) = E
Jj=11

s

over the m xn matrices F;, | =1,...,r, representing “components” of the
variables, subject to the constraint tr Fy'F}, = &é;,, where & denotes the
Kronecker symbol. As in section 5.3, tr F}'S; can be considered as the
loading of variable j on component !/, and hence PCA of nz—coefficients can
be seen as the method that maximizes a sum of squared loadings.

INDOMIX is the method that maximizes (cf. chapter 5, formula (8))

f(X)= T (tr x%,'S;)%, (4)
j=11 1

s

m
(x'Sx)* = T
j=11

™=

1

over X, subject to X'X =1, with S; chosen as P; or Q;. As in section 5.3,
maximizing g(Fy,...,F,) over F,...,F,, subject to the constraint tr F,'F, =
Sy, for all pairs ! and I', and to the additional constraint that F, = XX,
is equivalent to maximizing (4) over X, subject to X'X = I,.. Hence INDOMIX can
be interpreted as PCA of nz—coefficients subject to the additional constraint
that F, = x;x,'.

As has been mentioned above, PCA of nz—coefficients does not provide
coordinates for the objects. An advantage of INDOMIX over PCA of
nz—coefficients is that it does yield coordinates for the objects. As has been
shown in section 5.3, each component for the variables is directly and
uniquely linked to a component for the objects.

It is well-known that the PCAMIX solution yields object coordinates for
which X'X = I,.. That is, the PCAMIX solution satisfies the constraints imposed
on the components in INDOMIX. INDOMIX yields the best possible representation
of the variables, subject to these constraints. Therefore, INDOMIX yields a
representation of the variables that is better than the one given by PCAMIX.
This follows also from the fact that PCAMIX can be seen as a constrained
variant of INDORT, because PCAMIX can be seen as applying SUMPCA to the

quantification matrices S;, which is a constrained variant of INDORT, as
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described in chapter 2.

It can be concluded that INDOMIX is a method that optimally represents
relations among mixtures of variables, and also yields a representation of the
objects. Clearly, in this way, INDOMIX is a compromise between PCA of
nz—coefﬁcients and PCAMIX, in that it consists of a (constrained) PCA of the
variables and simultaneously yields coordinates for the objects (like PCAMIX
does). It should be noted that this interpretation also follows from the

hierarchical relations discussed in section 4.2.
7.4. The interpretation of the results of an INDOMIX analysis

Because INDOMIX is a compromise between PCA of nz—coefficients and
PCAMIX, its results partly parallel those of PCA of nz—coefficients and partly
parallel those of PCAMIX. That is, like in PCAMIX, INDOMIX provides object
coordinates, collected in matrix X. These can be interpreted in the same way
as in PCAMIX, but PCAMIX and INDOMIX emphasize different aspects. That is,
whereas PCAMIX emphasizes optimal representation of the objects and the
categories, INDOMIX aims at optimal representation of the objects and the
variables. As a consequence, PCAMIX does not provide an bptimal
representation of the variables, and INDOMIX does not provide an optimal
representation of the categories. Nevertheless, it is possible to provide
category coordinates for the INDOMIX solution, by computing Y; = D]-_lGj'X,
the matrix of centroids of the object coordinates of the objects that fall in
the category concerned, for every category of a qualitative variable.

The results of INDOMIX share with the solution of PCA of nz—coefﬁcients
that a representation of the variables is given. This representation is
provided by the diagonal matrices W; = Diag(X'S;X). The elements of these
matrices can be interpreted as the loadings of the variables on the
components. As far as qualitative variables are concerned, these loadings can
again (as in chapter 5) be seen as nz—coefﬁcients, each with a maximum of 1.
For a quantitative variable, the loadings on the components are squared
product-moment correlations between the variable and the components
concerned. In addition to these squared correlations it is useful to inspect
the nonsquared correlations, and their signs.

Finally, we have an overall value for evaluating the quality of the

solution. To this end, we use the proportion of inertia accounted for of the
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quantification matrices S;. This proportion is given by the maximal value of
f(X) (cf.(4)), divided by the total inertia. The total inertia of matrix S; is
equal to tr sz, which is (m;-1) for a qualitative variable and 1 for a
quantitative variable. Let m, be the number of qualitative variables, and m,
the number of quantitative variables, then the overall total inertia is equal
to (L;m;—mg+my), where };m; is the number of categories of the qualitative
variables. The proportion of inertia accounted for by the INDOMIX solution
(IAF;) is given by

| 3

T
r (xz'ijz)2
j=1 1=1

IAF; = . (5)

(Xjmj—mg+my)

In order to provide an indication of the quality of the INDOMIX
solution, it is useful to compare this measure to the inertia of the
quantification matrices that is accounted for by means of PCA of
nz—coefficients and PCAMIX, respectively. For PCA of nz—coefficients, as in
ordinary PCA, the proportion of inertia accounted for of the quantification
matrices is given by the sum of the first r eigenvalues of the “correlation”
matrix, divided by (I m;—mg+my).

If the object coordinates are computed by means of PCAMIX, one might
compute the proportion of inertia accounted for by means of (5) with the
PCAMIX object coordinates substituted for the INDOMIX object coordinates. It
should be noted, however, that the thus computed “proportion of inertia
accounted for” is the inertia accounted for by the PCAMIX object coordinates
when the quantification matrices are approximated by the INDORT model.
Another interesting measure for the quality of the PCAMIX solution would be
a measure that is based on the model for quantification matrices that is
actually fitted by PCAMIX. In section 4.2, PCAMIX has been described as
the method that applies SUMPCA to the quantification matrices S ;- That is,
PCAMIX fits the quantification matrices to the model
S,

;= XWX, (6)

for j=1,...,m, where W is a diagonal matrix, and X is the orthonormal

matrix of object coordinates. It has been shown in chapter 2 that this model
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is a constrained variant of the INDORT model, with W;=W, for all j.
This model is interesting in itself, because, when it adequately represents
the quantification matrices, it implies that all variables can be represented
by the same coordinates in the variable space. Because for the PCAMIX
solution we have Ej||S]-|[2=Ej||§j—5juz+):jll.§'j||2, the inertia accounted for
by the SUMPCA model (6), IAFs, is expressed by
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The denominator of (7) is given by };tr S ]-2 = (Lmj—mg+my). The numerator
can be computed as follows. Obviously, tr 3”]-2 =tr XWX'XWX' = tr W2 From
section 2.4 it readily follows that W is given by m'lAr, where A, contains the
first r eigenvalues of };5;. Hence tr 3 jz = m‘z):,/\,Z, where ), is the 1t

eigenvalue of ;S ;. Therefore,

I oA A
ATy = — j=11=1 _ 1=1 ' (8)
m (L jmj—mgtmy)  m(L;m—mgtmy)

Comparing IAF; and IAFg provides the user with a tool to choose between
representing the variables by means of INDOMIX and representing the
variables by means of the simpler model with poorer fit, PCAMIX.

7.5. INDOMIX applied to sets of quantitative or dichotomous variables

Above, INDOMIX has been described as a method for the analysis of a
mixture of variables. One special case of this method is the case where
INDOMIX is applied to qualitative variables only. In that case INDOMIX is
equivalent to INDOQUAL, described in chapter 5. Another interesting special
case is the case where INDOMIX is applied to quantitative variables only.
Apart from this special case the case where all variables are dichotomous will
also be treated here, because it turns out to be a special case of INDORT
applied to merely quantitative variables.

INDORT applied to a set of quantitative variables comes down to
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maximizing

(n”'x,'2;2,%,)". (9)
1

, 2
(x'S;%1)" =
1 J

s

f(X)= ¢
j=11

It
IS

11

Clearly, (n—lx,'zjzj'x,) can be rewritten as 'n,“l(zj'x,)z, which is the square
of the loading a;; of variable j on component ! Hence INDORT applied to a
set of quantitative variables can be seen as the method that maximizes the sum
of fourth powers of loadings of the variables on the components, Zj]-z;laj,4,
over X. Typically, this “PCA” will not yield the same solution as ordinary PCA
of quantitative variables. In section 8.5 this method is discussed a little
further.

It is well-known that MCA (and hence PCAMIX) applied to a set of
dichotomous (also called “binary”) variables can be seen as an ordinary PCA
of the dichotomous variables when the scores (zero and one) are standardized,
see, for instance, De Leeuw (1973, p.56-57). This property is explained here
again, and it is shown that a similar property exists for INDOQUAL.

When all variables are dichotomous, the indicator matrix for the jth
variable can be described by G; = (h]-|hj,), where h; is the vector containing
the zero-one scores on the dichotomous variable j, and hj, =1-h;. It is
readily verified that Jhy, = —Jh;, hence JG; = (Jh;|Jh;,) = (Jh;|-Jh;). The
matrix D; = G;'G; has diagonal elements f; and (n—f;), where f; is the
frequency of the unit—elements in h;.  Then JGJ-D]-—IG]-’J =
(f; +(n=F) ) IhjhyJ = nf(n—f;)hjhyJ. Tt is well-known that the
variance of a dichotomous variable j is given by n"zfj(n—fj), hence, when z;

J
denotes the standardized version of h;, we have JGjD]-—lGJ-’J =n""2z2;

745

From the above it follows that MCA of dichotomous variables finds object
coordinates as the (normalized) eigenvectors of n_lfjjzjzj'. Clearly, these
object coordinates are the same as the component scores found by PCA of a
matrix Z, containing as columns the vectors z; INDOMIX uses the
quantification matrices S]-=JGij_lGj'J . In case the wvariables are
dichotomous, these quantification matrices are given by
JGD;'GjJ = n'z;2}, hence S;=n""z;2;. It follows that, when INDOMIX
is applied to dichotomous variables, the dichotomous variables can be
considered as quantitative variables (with quantification matrices n'lzjzj’).

Furthermore, because INDOMIX maximizes Lioux'S jx,)2 subject to X'X =1,
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it can be seen that INDOMIX applied to dichotomous variables maximizes
1'L'2Z;]-):;,(x,’z]-z]-'x,)2 = n_zzjz:,(zj’x,)4, where n—l’zzj’x, is the point-biserial
correlation between variable j and component [. This point-biserial
correlation can be considered as the loading of variable j on component . It
follows that INDORT for dichotomous variables maximizes the sum of fourth
powers of the loadings of the variables on the components. However, with a
different interpretation of the squared point-biserial correlation, that is,
as an E—correlation coefficient based on the quantification matrices n‘lzjzj’
and x;x,, the “loading” of variable j on component ! is given by
tr n—lz]-z]-’x,x,’ = n'l(zj’x,)z, and hence INDORT for dichotomous variables can
be seen as the method that maximizes the sum of squares of loadings of the
variables on the components, as in ordinary PCA.

Above, it has been shown that dichotomous variables can be treated as
quantitative variables by both PCAMIX and INDOMIX. This is very useful
in practice, because the INDOMIX program can handle more quantitative
variables than qualitative variables. However, when the INDOMIX solution is
computed by treating dichotomous variables as quantitative variables, for
these variables only the (point-biserial)-correlations are given, instead of
the category coordinates. One can compute the category coordinates from these
correlations as follows. Let y;;; and y,; be the category centroids of the
first and second categories, respectively, of variable j for component I.
Because h;'Jh; = n—lfj('n,—fj), where f; is the category frequency of the first
category of variable j, and x=Jx,, y;; is given by f]-'lh]-'x, =
n_l/zfj_%(n—fj)Vz(hj'th)_V’h]-'Jxl = n_’/zfj’1/2(n—fj)l/2aj,, where aj; is the
point-biserial correlation between variable j and component [. Similarly, y,j;

can be shown to be equal to —n""%f "(n~f;) ™.
7.6. Discussion

In the present chapter INDOMIX has been described as a compromise
between PCA of nz—coefficients and PCAMIX. It is a compromise in that it
yields a good representation of the variables (like PCA of nz—coefficients)
and at the same time it yields object coordinates (like PCAMIX). However, as
has been shown in section 4.2, INDOMIX is not the only method that yields
such a compromise. It has been shown there that TUCKALS-3 and unconstrained

INDSCAL applied to the same quantification matrices yield other compromises
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between PCA of nz—coeff icients and PCAMIX.

In the present chapter a particular choice has been made for the
quantification matrices for the qualitative and quantitative variables.
However, as has been said in section 4.4, it is an open question whether other
choices of quantification matrices might be more useful. An important
consequence of the possibility of different choices for quantification
matrices is that, apart from INDORT on other quantification matrices, also
alternatives for PCAMIX and PCA of nz—coefficients can be developed. That is,
alternatives of PCAMIX can be developed as methods that find object
coordinates as the first r eigenvectors of the sum of the (alternative)
quantif.ication matrices. Implicitly, such an alternative method has been
proposed by Gower (1971), and it is actually used by Cuadras (1989). Some
alternatives for PCA of nz—coefficients have in fact been proposed by Janson
and Vegelius (1978a, 1982), by representing the associations in a set of
qualitative and quantitative variables by other generalized correlation

coefficients than the ones chosen by Saporta (1976).
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8. SIMPLE STRUCTURE IN COMPONENTS ANALYSIS FOR
MIXTURES OF QUALITATIVE AND QUANTITATIVE
VARIABLES

8.1. Introduction

The present chapter focuses on two main subjects. First, a procedure for
simple structure rotation for PCAMIX is considered. Next, it is shown that
INDOMIX is closely related to this simple structure rotation. This relation
between INDOMIX and the simple structure rotation for PCAMIX provides a
useful new interpretation of INDOMIX. It explains why the loadings of the
variables obtained by INDOMIX are more clearly clustered than those of
PCAMIX. In addition, it leads to a better understanding of a phenomenon
observed with INDOQUAL. That is, INDOQUAL does not only yield clearer
clusters of variables, it also tends to yield solutions with clusters of
objects that, per component, are more clearly separated and denser than those
found in an MCA solution. Apart from giving a formal explanation of this
phenomenon, it will be illustrated by means of an example data set. First,
however, it will be explained why simple structure rotation of the PCAMIX
solution might be useful.

In ordinary PCA, that is, PCA of quantitative variables, the solution
for the components (the object scores) and the loadings is determined up to a
rotation only. The purpose of so-called “simple structure” rotation is to
obtain components that have a clear interpretation in terms of subsets of the
variables. Simple structure criteria are usually defined in terms of optimal
patterns of (in absolute sense) small and large loadings. In general,
techniques for rotation to simple structure “are concerned with attaining a
factor matrix with a maximum tendency to have both small and large loadings”
(Kaiser, 1958, p.188). For a detailed discussion on the rationale behind
simple structure rotation the reader is referred to Harman (1976).

As has been explained in chapter 7, PCAMIX can be formulated as PCA of
the total set of (binary) indicator variables supplemented with the
quantitative variables. Therefore, the object coordinates can be seen as

component scores just as in ordinary PCA. Moreover, as in ordinary PCA, the

71



component scores are determined up to a rotation only. This is most easily
verified by noting that PCAMIX maximizes the function f(X) = tr X'};5;X, with
S; chosen as P; or Q; (as in chapter 7). Obviously, rotating the object
coordinates matrix X by an orthonormal matrix 7" does not change the function
value.

In practice, this rotational freedom seems not to have been used for
finding “simple structure”. In MCA (the special case of PCAMIX where all
variables are qualitative) it is standard practice to use as components those
that successively account for the maximum inertia, and ignore further
rotations. In PCAMIX rotation does not seem to have been considered either.
As is the case in ordinary PCA, the (unrotated) eigenvectors may yield
components that are difficult to interpret. Therefore, the first purpose of
the present chapter is to provide a method for rotating the component scores
such that the best interpretable solution is found, according to some
criterion.

As has been mentioned above, in ordinary PCA one rotates the component
scores such that the loadings have optimal simple structure. That is, simple
structure is expressed in terms of the loadings of the variables on the
components. If one wants to optimize similar simple structure criteria by
rotating the PCAMIX components, first of all one needs to define loadings, or

rather squared loadings, of the variables on the PCAMIX components.
8.2. A definition of squared loadings in PCAMIX

Like PCA, PCAMIX finds component scores for the objects on several
components. In ordinary PCA “loadings” of the variables on the components are
given by the correlations between the variables and the components. In PCAMIX
it is possible to define loadings for the quantitative variables in the same
way. That is, the loading of the quantitative variable j on component I can be
givenbya; = n"”zj'x,, the product-moment correlation between variable j and
component {.

For the qualitative variables one cannot use the product-moment
correlation. Instead, one has to choose another coefficient which expresses
the correlation between a qualitative variable and a (quantitative) component.

Such a measure in MCA is the “discrimination measure” (Gifi, 1981), which is

72



the contribution of a component to the inertia of a variable accounted for.
This discrimination measure is given by c¢;=x'P;x. Gifi (1981, p.96)
explains that this measure can be seen as the squared correlation between
variable j when it is “optimally quantified” and component I. Another
interpretation of c; is that it is the well-known correlation ratio 772. In
both interpretations the measure c; is considered as a squared correlation.
Therefore, it will be considered here as the squared loading of variable j on
component {.

In order to have the same notation for qualitative and quantitative
variables, c; is defined for a quantitative variable as c¢; = aﬂz =
n_l(zj’x,)2 = x,’(n"lzjzj')x,. Hence defining §; as P; or Q;, we have
ci=%'S;x for both qualitative and quantitative variables. It is of
interest to note that PCAMIX can be formulated as the method that maximizes
Ljcji, With ¢;; defined as above, over X, subject to X'X = I...

Having defined squared loadings for variables on PCAMIX components, we
are in a position to consider criteria that measure simple structure of the
loadings. Before considering simple structure criteria for PCAMIX, some
well-known simple structure criteria that are used with ordinary PCA will be

discussed.
8.3. Simple structure rotations for PCA

Kaiser (1958) has described several simple structure criteria, as well as
procedures to optimize these criteria over orthogonal rotations of the loading
matrix. Some of these have later been included in the orthomax family of
orthogonal rotations (Jennrich, 1970, Crawford & Ferguson, 1970; see
Clarkson & Jennrich, 1988). The criteria which are optimized by these
rotation techniques will be discussed briefly in the present section.

The orthomax family of simple structure rotations for PCA can be
described as the set of techniques that maximize the orthomax criterion
(denoted by the acronym ORMAX). This criterion is expressed in terms of the
squared loadings of the variables on the components. Let the loading for
variable j on component ! be given by aj, j=1,..,m, I =1,..,r. Then the

ORMAX criterion is given by
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2

ORMAX= T Fap' - L L (L )" (1)

j=11=1 =1 j=1

3=
I ™ S

Although in principle v can be any scalar, it is assumed here that 0 < v < 1.
Several special choices of y result in well-known simple structure criteria.

That is, choosing v = 0 yields the quartimax criterion (QMAX)

m T 4
QMAX= Y Laj, (2)
j=11=1
which has originally been proposed by Ferguson (1954). On the other hand,
choosing y = 1 yields the varimax criterion (VMAX) proposed by Kaiser (1958)

m T
VMAX= ¥ Tay -
j=11=1 1

(L e (3)

1j=1

S~

In addition to quartimax and varimax, Kaiser (1958) described the following

three simple structure criteria: Carroll (1953) proposed to minimize

m r
CROSSMIN = T Taplay’; (4)
j=1k<l
Neuhaus and Wrigley (1954) proposed to maximize the overall variance of
squared loadings (OVERMAX)

: m T 4 1 m T 2.2
OVERMAX= T Tay - —(L Lay); ()
j=11=1 j=11=1
Saunders (1953) proposed to maximize the kurtosis of the total set of loadings

combined with the set of loadings with reversed sign, which is proportional to

m T 4 1 m T 2.2
KURIMAX= T Zay,/ —(L Lay). (6)
j=11=1 j=11=1
So far, only the simple structure criteria themselves have been
discussed. The techniques for optimizing these criteria will now be discussed
briefly. First of all, it should be noted that optimizing these criteria over
orthogonal rotations of the component scores is equivalent to optimizing

these criteria over orthogonal rotations of the loadings. This follows from
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the fact that, when the m x r matrix A = n™¥2Z'X contains the loadings of the
variables (in matrix Z) on the components (in matrix X), a rotation of the
components by a matrix T is paralleled by the same rotation of the matrix of
loadings. That is, AT = n”™¥2Z'XT contains the loadings of the variables on the
rotated components. The techniques for optimizing the simple structure
criteria mentioned above are all techniques for rotating the loading matrix.

In considering the different techniques for rotating the loading matrix,
it is useful to note that the quartimax criterion and the varimax criterion
are both special cases of the orthomax criterion. Moreover, as has been shown
by Kaiser (1958), minimizing the CROSSMIN criterion and maximizing the
OVERMAX and KURTMAX criteria over orthogonal rotations of the loading
matrix is equivalent to maximizing the quartimax criterion. As a consequence,
any of the optimization problems mentioned above can be subsumed under the
general problem of maximizing the orthomax criterion over orthogonal
rotations of the loading matrix. A description of maximizing the orthomax
function, which turns out to be particularly useful in the present context (as
will become clear later), was given by Ten Berge, Knol and Kiers (1988). Let
A be the m x r matrix of loadings, and let a;' be the jth row of A. Ten Berge
et al. (1988) define E; = (6A’A-maja;’), for j=1,..,m, with § defined such
that vy = §(2-6), and show that the problem of maximizing the orthomax
function is equivalent to simultaneously diagonalizing the set of E ; matrices
in the least squares sense, or equivalently, maximizing L tr (Diag T'E‘jT)2
over orthonormal matrices T'. For this problem of simultaneously diagonalizing
a set of matrices one can use an algorithm proposed by De Leeuw and Pruzansky
(1978).

In the present section a number of simple structure criteria has been
described and it has been pointed out that the orthogonal rotations that
optimize these criteria can all be found by means of simultaneous
diagonalization of the E; matrices. In the next section, it will be shown how
the same simple structure criteria can be optimized over rotations of the

PCAMIX component scores solution.
8.4. Simple structure rotations for PCAMIX

In the present section, methods will be discussed for rotation of the
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PCAMIX component scores such that the loadings have optimal simple structure
in terms of the orthomax criteria. It should be noted that rotated component
scores in PCAMIX do not correspond to a loading matrix which can be found by
rotating the original loading matrix. This is a consequence of the fact that
no definition of loadings for qualitative variables seems to be available
such that rotating component scores corresponds to rotating the matrix of
corresponding loadings. Therefore, in PCAMIX it does not suffice to express
the simple structure criteria in terms of the original loadings and a rotation
matrix. Instead, these criteria are to be expressed in terms of the squared
loadings of the variables on the rotated components. It will now be shown how
this can be accomplished.

The simple structure criteria given in (1), (2), (3), (4), (5), and (6)
can be expressed in terms of the squared PCAMIX loadings by replacing aﬂz by
¢j for all j and I. The problem of optimizing the simple structure criteria
over orthogonal rotations of the PCAMIX component scores will now be treated
by giving an algorithm for maximizing the general ORMAX function (1) only. As
has been explained above, the QMAX (2) and VMAX (3) functions are special
cases of this function. Optimizing the CROSSMIN (4), OVERMAX (5), and
KURTMAX (6) functions will be shown to be equivalent to maximizing the QMAX
function.

The ORMAX criterion can be rewritten in terms of c;; as

ORMAX= T Lei” -1 £(L ) (7)

j=11=1 1=1 j=1

3R

In order to write the ORMAX criterion as a function f,. of the component

scores matrix X the loading ¢; = x;'S;%; is substituted for c; in (7). This

gives
m r 2 T m 2
fr(X)=ORMAX= T ¥ (x/5;%)" - % L (XL x5x)
j=11=1 I=1j=1
m T , 2 7y r , 2
= L (x/'S;%)" - m L (X'L;5%)" (8)

j=1l= 1

In order to find the rotation that maximizes the ORMAX criterion we have to

maximize f,.(FT) over orthonormal matrices T, where F contains the unrotated
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component scores solution for PCAMIX. The problem of finding the rotation
that maximizes f,, will be translated here into a problem of simultaneously
diagonalizing a set of matrices, just as has been done by Ten Berge et al.
(1988) for the orthomax rotation of a loading matrix. Let the 1™ column of T

be given by t;, then f,.(FT) is given by
m T 2 ‘Y T 2
for(FT) = £ L (WFSiFt)" - - L ( Lit'F'S;Ft)
= 1=1

T (& (F'S;F~8m™ TuF SiF)y), (9)

with & chosen such that 26-6° = v. For § =y =1, the right-hand side of (9)
follows at once from the fact that the variance can be written as an average
squared deviation from the mean. If § # 1, the second equality in (9) follows
from the fact that

m T m T

I L (Q(FS;F-sm L FSF)) = § L (4FSFG) +

j=11=1 j=1l=1
L L (4/6m LF'SiFt)? — 2 T L (4/FSF) (6 6m  TiF SiFty)
j=11=1 j=11=1

m T T
=L I (4FS;Fy)" + m T 8m (4 ;'S ;)

j=11=1 1=1
i,
= 2 6m” § (GFLSF6) (6 T SkFty)
l=1
= T L(WGFSFy)’ + 6m™ T (G LFS;F)? - 2 sm™ L (t/L;FS;F)
j=1l=1 1=1 =1
m T 2 1 T 2
= T I (GFSF)’ + m™(6°-26) T (4/T,F'S;Ft)". (10)
j=11=1 =1

The columns of F are eigenvectors of ¥;S;, normalized to unit sums of
squares, hence F'Y;S;F = A, where A is the diagonal matrix with the first r

eigenvalues of };S; on its diagonal. With this result (9) can be rewritten as

f,.(FT) = f; (t'(F'S,F-ém™ A)t;)>. (11)

j=11=1

| 0 8
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Let £; be defined by

E;= (mF'S;F - 6), . (12)

for j =1,...,m. Then (11) can be rewritten as

£, (FT) = m™ )'5 tr T'E,;T(Diag T'E;T). (13)
j=1

Ten Berge (1984, p.348) has shown that maximizing such a function over
orthonormal matrices T is equivalent to the problem of simultaneously
diagonalizing a set of matrices El,...,im in the least squares sense, and that
hence the algorithm for this problem, proposed by De Leeuw and Pruzansky
(1978), can be used, or any other algorithm for the simultaneous
diagonalization of a set of symmetric matrices. Hence maximizing the orthomax
criterion by rotating the PCAMIX component scores can be done by means of an
algorithm for simultaneous diagonalization of matrices Ey,....E, with E“j
defined as in (12).

As has been mentioned above, Ten Berge et al. (1988) have shown that the
problem of maximizing the orthomax function over orthogonal rotations of a
PCA loading matrix is equivalent to the problem of simultaneously
diagonalizing the matrices E; = (6A'A — ma;a;'), where A is the m xr PCA
loading matrix, and a;" is the jth row of A. It will now be shown that, in the
special case where PCAMIX is applied to a set of merely quantitative
variables, the procedure for the orthomax rotation of the PCAMIX solution
can be seen as the simultaneous diagonalization of a set of £ j matrices which
are proportional to the E; matrices in the Ten Berge et al. (1988) procedure.
When all variables are quantitative the S; matrices are given by
S;= n'lzjz]-’. Hence F = (mn”'F '2;2;'F — 8A), where A is the diagonal matrix
with eigenvalues of n_l):jz]-z]-’. Clearly, a;' =n—vzz]-'F , hence mn—lF'zjzj'F =
maja;'. In addition, matrix A’A:F'n_l):]-zjz]-'FzA. Therefore, E‘j can be
written as E; = (ma;a;' — A'A) = -E;. Hence the simultaneous diagonalization
of the matrices E‘j and that of the matrices E; yield the same rotation
matrix. It can be concluded that the orthomax rotation procedure for ordinary
PCA is a special case of the orthomax rotation procedure for PCAMIX that

is suggested here.
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The quartimax criterion and the varimax criterion are special cases of
the orthomax criterion. Therefore, with the orthomax rotation procedure for
PCAMIX suggested above we have at once a quartimax and a varimax procedure
for rotating the PCAMIX solution. These are given by setting v to 0 or 1,
respectively. The orthomax rotation procedure for PCAMIX has been described
as the simultaneous diagonalization of a set of E ; matrices as defined by
(12). The E ; matrices do not explicitly contain vy, but depend on y because 6
depends on . The E ; matrices for the quartimax procedure are given by taking
6 =0 (or § =2, which is less convenient and therefore ignored), because then
¥ = 0. For the varimax procedure the £ ; matrices are given by 6 =1, because
then v = 1.

So far only the QMAX and VMAX criteria have been considered. As has
been shown by Kaiser (1958), for ordinary PCA component scores the procedure
for optimizing the CROSSMIN, OVERMAX and KURTMAX criteria over orthogonal
rotations are all equivalent to the quartimax rotation procedures. That is,
these criteria are all optimized by the same orthogonal rotation matrix. For
orthogonal rotation of the PCAMIX component scores again the same rotation
matrix minimizes CROSSMIN and maximizes QMAX, OVERMAX and KURTMAX, as
is shown below.

The CROSSMIN criterion for PCAMIX can be rewritten in terms of the

squared loadings of the variables on the (rotated) components as

L(Zew)™- 3

1 1=1 J

m T

T
Yen (14)
Jj=1k<l j =

The first term in the right-hand side contains Tic; = Yit/'F'S;Ft =
tr T'F'S,FT = tr F'S;F, which does not depend on T, because T is orthonormal.
Therefore, minimizing the CROSSMIN criterion over orthogonal rotations is
equivalent to maximizing the second term in the right—hand side of (14). This
term is the QMAX criterion (multiplied by 1/2) expressed in squared loadings
¢;- Therefore, minimizing the CROSSMIN criterion is equivalent to maximizing
QMAX, for PCAMIX.

The OVERMAX and the KURTMAX criteria can be rewritten in terms of

squared loadings ¢;; as
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m T m T
OVERMAX= ¥ T ¢’ - —(L L)’ (15)
j=11=1 j=11=1

and

m T m T
KIRTMAX = T T i’/ —( T L e’y (16)
j=11=1 j=11=1
respectively. Both criteria contain the term };c;, which does not depend on
the orthonormal rotation matrix 7. As a consequence, finding the orthogonal
rotation that maximizes these criteria depends only on the term ):jzlcﬂz,
that is, again, the QMAX criterion. It can be concluded that finding the
rotation matrix that optimizes the CROSSMIN, OVERMAX, and KURTMAX criteria
for PCAMIX comes down to finding the orthogonal rotation that maximizes the
QMAX criterion. The procedure for finding this rotation matrix has been
discussed above as a special case of the procedure for orthomax rotation of
the PCAMIX solution.

This concludes the discussion of simple structure rotation techniques
for PCAMIX solutions. It is in no way intended to give a complete account of
possible simple structure rotations for PCAMIX solutions. There are many
other simple structure criteria for ordinary PCA, among which oblique simple
structure rotations, as described, for instance by Clarkson and Jennrich
(1988), that might be of interest for PCAMIX.

In the present section methods have been discussed for optimizing simple
structure criteria for loadings of variables on PCAMIX component scores. These
methods are based on rotation of the PCAMIX component scores. Such a rotation
does not affect the optimality of the function that is maximized by PCAMIX,
that is, ¥;¥ic;, which can be seen as a measure for explained inertia. One
might, however, want to find those components that maximize the simple
structure criteria, possibly loosing the optimality of the function maximized
by PCAMIX. In the case of merely quantitative variables, for instance, one
might seek the components that have the maximal varimax or quartimax
function value over all possible sets of orthogonal components, regardless of
the variance they explain. In the next section, methods will be discussed for
finding such components, that is, components that maximize the orthomax

criterion for PCAMIX loadings over all possible sets of orthogonal
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components.
8.5. INDOMIX and a generalization

PCAMIX is the best—-known method for the analysis of mixtures of
variables. In chapter 7, however, an alternative method, INDOMIX, has been
developed as a compromise between PCAMIX and “PCA of quantification
matrices”, in that it is directed at optimally representing the variables (as
PCA of quantification matrices does) while at the same time providing
component scores for the objects (as PCAMIX does). In the present section it
is shown that this method optimizes the quartimax criterion over all possible
sets of orthogonal component scores. In addition, an alternative method is
discussed, which might be used for optimizing the varimax criterion, or any
other criterion that belongs to the orthomax family.

INDOMIX comes down to maximizing

gX)= Lt Diag(X'S;X)” = §

T 2 m T 2
L(x'Sx)" =T L, (17)
Jj=1 Jj=1l=

1l=1 j=1l=1

subject to X'X =1I,.

Clearly, maximizing g(X) is equivalent to maximizing the quartimax
function. INDOMIX maximizes the quartimax function over orthogonal
component scores matrices X, whereas the quartimax rotation applied to
PCAMIX maximizes the quartimax function over orthogonally rotated
component scores matrices FT. The class of matrices X that are only
constrained by X'X = I,. contains not only all rotations FT of F, but also
matrices with columns outside the column-space of F. Therefore, the maximum
of g(X) is always at least as large as the maximum of g(FT). This provides
another interpretation of INDOMIX. INDOMIX maximizes the quartimax
criterion over all possible orthogonal component scores matrices, in this way
yielding a quartimax value that is always at least as high as the maximum
possible quartimax value that can be obtained by orthogonal rotation of the
PCAMIX solution. This implies that INDOMIX yields solutions that have a
higher amount of simple structure than the optimally rotated PCAMIX
solutions, when simple structure is defined in the quartimax sense.

The quartimax criterion being one of the first analytic simple structure
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criteria, it is not the most prevalent criterion in ordinary PCA. As Kaiser
(1958) pointed out, using the quartimax criterion tends to yield solutions
with one general component, which is quite contrary to the purpose of
achieving maximum simple structure. This tendency of yielding a general
component does not seem to be present with INDOMIX, and in practice it is
found that, even though INDOMIX maximizes only the quartimax function,
INDOMIX tends to yield simple structure in terms of other criteria (like
varimax) as well, as will be discussed later. Nevertheless, INDOMIX does not
maximize these other criteria, and it seems useful to discuss methods that do
maximize other simple structure criteria (in the orthomax family) over all
possible sets of orthogonal component scores, in the same way as INDOMIX
maximizes the quartimax criterion.

The orthomax function (8) can be rewritten as

for(X) =

k]

-

I 7=

—

.
(Xz'ijz)2 - ,7—,; r (Xz'zjijz)2
1=1

J l

(%/'(S;-6m " LiSi)x1) 7, (18)

| 0 3

m
=15

j=11=1
with & again chosen such that 26-§° = v. The last step in the derivation of
(18) is based on a similar reasoning as is made in deriving (10). Clearly,
choosing & = 0 (or § = 2) we have f,.(X) = g(X). However, (18) can be defined
for any other y between 0 and 1 (to which corresponds & = 1+ (1-y)*2). In
particular, the varimax function is maximized over all orthogonal component

scores matrices X by maximizing

m T
h(X)= T T (x/(S;-m LSk, (19)
j=11=1
over X, subject to X'X =1I,. That is, this method applies INDORT to the
matrices (Sj—m_IEkSk), which are the matrices S; “centered” with respect to
their mean.

Ten Berge et al. (1988) have provided an algorithm for maximizing (17).
They have shown that this algorithm converges monotonically, when the S; are
positive semi-definite. Their algorithm might be used for maximizing (18) as
well, with S; replaced by (Sj—ém'l):kSk), but then monotone convergence of

the algorithm is no longer guaranteed. An algorithm for which monotone
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convergence is guaranteed has been described by Kiers (in press). It is
a slightly adapted version of the Ten Berge et al. algorithm.

It can be concluded that several methods are now available for finding
components for mixtures of variables such that the orthomax simple structure
criteria (for the loadings of the variables on the components) are maximized.
One of these approaches is to perform PCAMIX first and then rotate the
component scores such that they optimize the simple structure criteria over
orthogonal rotations of the PCAMIX component scores. This procedure finds
those sets of components that account best for the inertia as measured in
PCAMIX, and, among these components, it finds that set of components that
yields the highest simple structure value. The other approach, the
generalization of INDOMIX that maximizes (18), is to seek those components
that have the best possible simple structure, at the cost of a loss (which
tends to be rather small in practice) in explained inertia.

The special case where the generalization of INDOMIX that maximizes the
varimax function h(X) is applied to a set of merely quantitative variables is
of special interest, because it provides an alternative to ordinary PCA. This
method will yield varimax values that are always at least as high as the
varimax values of rotated PCA loadings. Therefore, when one’s main objective
is to find components that have clear simple structure, that is, give clear
clusters of variables, and when accounting for the variance is less important,
then the generalization of INDOMIX might be a useful alternative to ordinary
PCA. Moreover, although the explained variance };¥;c; is no longer maximized
by the generalization of INDOMIX, it cannot be very small either, because,
this would contradict the maximality of h(X) which can be written as
Tiilcs —m—lzkckl)z, that is, the sum of column-variances of the elements
of C.

In the present section, a method has been proposed for maximizing the
simple structure criteria in the orthomax family, including the VMAX and
QMAX criteria. In addition, maximizing the QMAX criterion over orthogonal
rotations has been shown to be equivalent to optimizing the CROSSMIN,
OVERMAX, and KURTMAX criteria, which are in this way also related to the
orthomax family. However, when the orthomax function is maximized over all
possible sets of orthogonal component scores, the equivalence between
maximizing QMAX and optimizing CROSSMIN, OVERMAX, and KURTMAX can no
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longer be shown to hold. Nevertheless, there are some relations between
INDOMIX and optimally rotated PCAMIX solutions in terms of these criteria.

These and some other results are given in the next section.

8.6. Relations between INDOMIX and simple structure rotations
of PCAMIX

In the previous section, the generalization of INDOMIX that maximizes
the orthomax function over all possible orthogonal component scores matrices
has been discussed. Obviously, this method always yields an orthomax function
value that is at least as high as the one obtained by the orthomax rotation
of the PCAMIX solution. As has been mentioned above, this method is a
generalization of INDOMIX (chapter 7) which maximizes the quartimax function.
In the present section, it will be shown that the latter method, INDOMIX,
does not only yield a quartimax function value which is at least as high as
the one attained by quartimax rotation of the PCAMIX solution, but that it
also yields values at other simple structure criteria that are at least as
high as the ones attained by optimally rotated PCAMIX solutions. These
comparisons are summarized in Results 1 to 5. In these results the component
scores matrix of the INDOMIX solution is denoted as X, that of the unrotated
PCAMIX solution as F, and that of the optimally rotated PCAMIX solution as
FTO. That is, T0 is the rotation matrix that optimizes the simple structure
criterion at hand. The simple structure criteria given above as ORMAX,
QMAX, VMAX, OVERMAX and KURTMAX are seen here as functions of the

component scores matrices.

Result 1. QMAX(X) > QMAX(FT ) > QMAX(F).

Result 2. a. OVERMAX(X;) > OVERMAX(FT ) > OVERMAX(F).
b. KIRTMAX(X;) > KURTMAX(FT ) > KURTMAX(F).

Result 3. ORMAX(X;) > ORMAX(F).

Result 4. VMAX(X;) > VMAX(F).

Result 5. ORMAX(X;) > ORMAX(FTO) = ORMAX(F), if m =2, and both
variables are qualitative, that is, in case PCAMIX is

equivalent to correspondence analysis.
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The results given above are proven as follows.

Proof 1. From the fact that INDOMIX maximizes QMAX over all possible
component scores matrices it follows at once that QMAX(X;) > QMAX(FT 0). The
optimality of TO guarantees that QMAX(FTO) > QMAX(F).O

Proof 2. The OVERMAX function can be written as

OVERMAX(X) = g(X) - m™ 7 'f*(X), (20)
where f(X) is the function maximized by PCAMIX, and g(X) is the function
maximized by INDOMIX (17). Obviously, f(FTO) = f(F) > 1(X;), and g(X;) >
g(F TO). Because f(X) is nonnegative for all X, it follows that
fZ(FTO) > fz(XI). As a consequence g(X;) - m (X)) >
{g(FTO) - m“r“fz(FTo )J , that is OVERMAX(X;) > OVERMAX(FT ). Obviously,
the optimality of To guarantees that OVERMAX(FT 0) > OVERMAX(F). This
completes the proof of Result 2a. For the proof of Result 2b it is useful to
note that KURTMAX(X) = mrg(X) /fZ(X ), from which Results 2b follow at once,
according to a similar reasoning as the one that is used in proving 2a. O

Proof 3. The ORMAX function (8) can be rewritten as

ORMAX(X) = g(X) - L k(X), (21)
where 0 < v < 1, and k(X) is defined as
k(X)= T (%'L;5%)" (22)
l=1 .

Let an eigendecomposition of },;5; be given by ¥;S; = KAK'. Then k(X) can be

rewritten as

(x'KAK'x;)?. (23)
1

k(X) =
1

T
From the Cauchy—-Schwarz theorem it follows that

(X KAK'%))? = (%' KAK')(x))* < (%' KA’K'xy) (24)
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and hence

T T
T (xKAK'%)? < T (KA’K'x)) = tr XKA’K'X. (25)
l=1 =1

It is readily verified (Ten Berge, 1983) that the right—-hand side in (25) is
smaller than or equal to the sum of the first r diagonal elements of A% Let
A, denote the diagonal matrix containing the first 7 diagonal elements of A,
then

K(X) = T (xKAK'%)
=1

2 <tr A2 (26)

Inequality (26) yields an upper bound to k(X). Clearly, this upper bound is
attained by choosing X as K, the matrix with the r eigenvectors of };5; that
belong to the first r eigenvalues of };S;. This is precisely the unrotated
PCAMIX solution F for the component scores. Therefore, k(X;) < k(F), and,
because v > 0, —yk(X;) > —yk(F). Combining this result with the fact that
g(X;) > g(F) proves that ORMAX(X;) > ORMAX(F).O

Proof 4. Result 4 follows immediately from Result 3 when v is taken equal
to 1.0

Proof 5. If m = 2 and both variables are qualitative it can be shown that

F'S\F=FS,F= %Ar. Hence f,.(FT 0) is the maximum over T of

2 T
for(FT) = T L (4/(FS;F-54)t)% (27)

j=1l=1

as follows from (11). Substituting F'S|F = F'S,F = %Ar in (27) yields

L (6/((1-6)54,)t)". (28)

2
tm(FT)z r
= 1

j=11

It is proven analogously to the proof of (26) that

2 r 2
for(FT) = L T (&/((1-6);4)" < L 2(1-6)%tr A", (29)
Jj=1l=1 j=1

The right-hand side of (29) gives an upper bound to f,.(FT), which is attained
for T=1. That is, fOT(FTO), the maximum over T of f,.(FT) is equal to
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f,~(F), hence ORMAX(FT 0) = ORMAX(F). With this equality ORMAX(X;) >
ORMAX(FTO) = ORMAX(F) follows immediately from Result 3.0

It is of interest to mention that, for m =2, Result 5 implies that
VMAX(F) = VMAX(FTO) = 0. The fact that VMAX(FTO) = 0 follows at once upon
substitution of 6 =1 in (29). That is, the Correspondence Analysis (MCA with
m = 2) solution yields a varimax function which is always zero, and cannot be
increased by rotating the solution.

Result 5 has been included, because it proves that VMAX(X;) > VMAX(F TO)
in a special case. This result does not generally hold for m > 2. Yet, in
practice, it is often found that VMAX(X;) > VMAX(FT 0). This can be explained
by the fact that VMAX = Ej):,cﬂz - m_x):,(zjcﬂ)z, in which the first term is
maximized by INDOMIX. The PCAMIX solution (and any rotation of this)
maximizes ¥ ;Y;c;. Obviously, a low value for E,(chﬂ)z for a certain PCAMIX
solution would contradict the optimality of };¥;c;. Hence PCAMIX tends to
find loadings for which E,():jcj,)z is high. This explains why there is a
tendency for the INDOMIX solution to yield a higher value of the VMAX
criterion than any rotation of the PCAMIX solution. Along with Results 1 and
2, this result is of special interest when the INDOMIX and PCAMIX
solutions are to be compared in terms of simple structure. In the next
section, a comparison is made of the special cases of INDOMIX and PCAMIX
where they are applied to sets of qualitative variables, that is, INDOQUAL
and MCA, respectively. It will be shown that the higher simple structure
values attained by INDOQUAL can be interpreted in terms of a better
discriminatory capability of INDOQUAL compared to MCA, at the cost of a

loss of explained inertia.

8.7. A comparison of MCA and INDOQUAL with respect to discriminatory
capability

Above, it has been shown that INDOMIX attains values of several simple
structure criteria which are at least as high as those attained by optimally
rotated PCAMIX solutions. The present section discusses a consequence of this
result for the case where only qualitative variables are involved. It has been
mentioned by Van der Burg (1988, p.171 ff) that MCA can be seen as a cluster
technique. It will be shown here that MCA (that is PCAMIX applied to a set
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of merely qualitative variables) finds components that discriminate the
objects as well as possible in terms of all variables, whereas in INDOQUAL
each component tends to discriminate the objects mainly in terms of a subset
of the variables. For different components different subsets may be involved.
As a consequence, INDOQUAL yields components that discriminate the objects
better than MCA does, as will be explained below.

Each qualitative variable defines a set of disjoint groups of objects
that fall in different categories of the qualitative variable. Hence for each
variable one can, for each component, compute the group averages on that
component. Now the variance of those group averages is called the “between
groups variance”, or, because the groups are defined by the categories, the
“between categories variance”. For both MCA and INDOQUAL it is readily
verified that the solution for the matrix of component scores X is centered
column-wise. Therefore, for every [/, we have x; = Jx;. As a consequence, the
between categories variance of x; with respect to the categories of variable j

can be given as

I Gt gj\2
opy=n L folx) =
g=1

n_l XIIG]'DJ-_IG]"XI = n-l XI'JG]'D]-—IGJ'IJX, = le, (30)

where f, denotes the number of objects in category g of variable j, x,gj
denotes the average value of X; in category g of variable j, see, for
instance, Tenenhaus and Young (1985, p.98). Hence the loading of variable j
on component ! is equal to the between categories variance for component /,
with respect to (the categories defined by) variable j. This between
categories variance can also be considered as the amount of discrimination,
provided by component I, between the objects that fall in different categories
of variable j. Hence the loading ¢; indicates how strongly component [
discriminates the objects in terms of the categories of variable j.

The above given interpretation of the loadings provides the basis for our
statement that the INDOQUAL components discriminate the objects better than
the MCA components do. As will be explained below, this difference between
INDOQUAL and MCA is an immediate consequence of the fact that
INDOQUAL provides a solution with higher simple structure than MCA does,
at least in terms of the QMAX, OVERMAX and KURTMAX criteria, and,

88



typically, also in terms of the VMAX criterion.

The results of the previous section on differences between INDOQUAL and
MCA in terms of simple structure criteria can be interpreted as follows. The
fact that the INDOQUAL loadings have simple structure values that are higher
than (or equal to) those of MCA, even after optimal rotation of the MCA
solution, implies that INDOQUAL finds loadings that, overall, are more
diverse than those resulting from MCA. The loadings are bounded between zero
and one. Therefore, a higher simple structure in the loadings implies that
more loadings tend to the extreme values, zero and one. Hence INDOQUAL
tends to yield more extreme loadings than MCA does. From (30) it also follows
that INDOQUAL yields more extreme between categories variances than MCA
does. This implies that the INDOQUAL components discriminate the objects
better in terms of the categories of certain variables (those with large
between categories variances), and, at the same time worse in terms of other
variables than MCA does. In this way, it can be said that INDOQUAL finds
components each of which seek to discriminate the objects, to a larger extent
than MCA does, in terms of (possibly different) subsets of variables. Because
INDOQUAL seeks to discriminate the objects in terms of fewer variables than
MCA does, INDOQUAL will succeed better in actually discriminating the
objects. MCA tries to discriminate the objects as well as possible in terms
of all variables. When certain variables define very different groupings of
objects, the MCA components will tend to make compromises by discriminating
the objects a little worse both in terms of the one variable and in terms of
the other variable. On the other hand, INDOQUAL will optimally discriminate
the objects in terms of either one of these “opposite” variables and will
possibly discriminate the objects in terms of the other variable by means of a
different component.

In addition, it can be said that a subset of variables that load high on
a component consists of variables that are, at least in one respect, rather
strongly related to each other. That is, if all variables in a subset of
variables load high on a component, this component discriminates well the
categories of each of these variables. This is only possible if the partitions
(groupings) defined by the different variables are highly overlapping. The
latter is another way of saying that the qualitative variables involved are

highly related with respect to the partition of objects into groups that are

89



best discriminated by the component.

It can be concluded that INDOQUAL finds components that, overall,
discriminate the objects better than MCA does, and that it does so by
discriminating the objects in terms of the categories of subsets of variables
that have highly overlapping partitions.

Above, it has been shown that INDOQUAL finds loadings that tend more to
zero and one than those in MCA. However, this does not imply that each
component of INDOQUAL always has loadings that are greater than those of
MCA. Yet, in practice INDOQUAL often yields solutions with loadings that
do not only have more simple structure than those of MCA, but that are
also, for each component, higher than the highest MCA loadings for a
corresponding MCA component. As a consequence, INDOQUAL yields a solution
in which, with respect to each component, objects fall apart more clearly than
in MCA into (denser) clusters of objects that represent the categories of
those highly loading variables.

It can be concluded that INDOQUAL finds loadings that tend more to zero
and one than those in MCA. In addition, it has been stated that, in practice,
this phenomenon often leads to INDOQUAL components with clusters of
objects that are denser and more separated than those (possibly) resulting
from MCA. In the next section these phenomena of better “component—wise
discriminatory capability” and of “component-wise clearer clustering” are

illustrated by means of an example analysis.
8.8. An example analysis of empirical data

The empirical data to be analyzed in the pfesent section has been given
by Hartigan (1975, p.228). The data consists of 24 objects like screws and
nails, that are classified according to 5 qualitative variables (Whether or
not they have a Thread, what type of Head they have, what Indentation they
have in the heads, what kind of Bottom they have, and whether or not they are
made of Brass). In addition, their Length (in half inches) is measured, which
is considered here as a qualitative variable with five categories (1 through 5
half inches). Although the data is of little practical interest, it serves to
illustrate the clustering phenomenon, because the objects are well-described

in terms of predefined clusters (those of screws, bolts, nails and tacks),
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whereas this clustering does not refer directly to a qualitative variable in
the analysis.

In the present section the MCA solutions and the INDOQUAL solutions for
r = 3 will be compared. The MCA solution will be considered both before and
after varimax rotation. Table 8.1 gives the MCA loadings before varimax
rotation and after varimax rotation. It can be seen that the varimax rotation
changes the loadings (mainly those of the fifth variable) only slightly, and
that these changes lead to increasing simple structure, as expressed by the
varimax and quartimax function values. It can also be verified that the amount

of explained inertia is equal in the two solutions.

Table 8.1. MCA loadings before and after varimax rotation.

before varimax rotation after varimax rotation

comp.l comp.2 comp.3 comp.l comp.2 comp.3
Thread 0.93 0.02 0.00 0.95 0.00 0.00
Head 0.95 0.64 0.74 0.96 0.64 0.73
Head Ind. 0.94 0.67 0.08 0.95 0.74 0.00
Bottom 0.55 0.02 0.00 0.50 0.05 0.01
Length 0.29 0.82 0.69 0.24 0.78 0.79
Brass 0.06 0.03 0.46 0.09 0.00 0.47
MCA-inertia (T;Xic;) 7.90 7.90
varimax function value 0.34 0.37
quartimax function value  0.97 1.00

Table 8.2 gives the loadings for INDOQUAL. Clearly, the components in the
INDOQUAL solution and those in the rotated MCA solution have high loadings for
the same variables, but those on the INDOQUAL components are higher. This is
reflected by the fact that the varimax and quartimax function values are
higher for INDOQUAL than for the rotated MCA solution. It can also be seen
that the higher simple structure of INDOQUAL is obtained at the cost of a

(small) loss in explained inertia compared to the MCA solution.
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Table 8.2. INDOQUAL loadings.

comp.l comp.2 comp.3

Thread 0.99 0.00 0.00
Head 1.00 0.87 0.81
Head Ind. 0.99 0.31 0.02
Bottom 0.40 0.00 0.02
Length 0.17 0.91 0.82
Brass 0.06 0.00 0.24
MCA-inertia (T;Tic;q) 7.61

varimax function value 0.45

quartimax function value 1.04

In both the INDOQUAL and the MCA solutions, the first component is highly
correlated with the first three variables. These are the variables that are
most important in distinguishing screws and bolts on the one hand from nails
and tacks on the other hand. Therefore, the object scores on the first
components of both solutions are “plotted” in Figure 8.1. Each of these plots
is made in the form of a stem and leaf diagram in which the component scores
of the objects are divided into 30 intervals. Because it is of interest to
see how well the original clustering in the data appears in the solution, the
objects are indicated by the letters T (tack), N (nail), S (screw) and B
(bolt). ’

From inspection of Figure 8.1 it follows that the objects are clustered
more clearly with respect to the first INDOQUAL component than with respect to
the first MCA component. In addition, the original categories appear as partly
separated clusters. That is, the nails and tacks now form one cluster. The
bolts and screws form different clusters, but are not separated very much.
With respect to the second and third components similar plots could be made,
and one would again find a clearer clustering with respect to the INDOQUAL
components than with respect to the MCA components. This demonstrates the
phenomenon that the INDOQUAL components have a better discriminatory

capability than MCA has, as was explained in the previous section.
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Figure 8.1. Stem and leaf diagrams for the object scores on the first
components for MCA and INDOQUAL.

8.9. Discussion

In the present chapter methods have been described for representing
mixtures of variables by component scores that optimize simple structure
criteria. Two strategies have been proposed. The first one is based on first
optimally accounting for the inertia in the variables, and then rotating these
component scores (without loss of inertia accounted for) to optimal simple

structure. The second strategy consists of finding component scores that
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primarily optimize simple structure, but will still tend to explain a
reasonable amount of inertia. This second strategy has a similar objective as
the one that prevails in Projection Pursuit (e.g., Jones & Sibson, 1987), that
is, that of revealing clustering in the data. Whether or not the methods
proposed here might provide a useful alternative to Projection Pursuit methods
is yet to be investigated.

Apart from providing methods to optimize simple structure by means of
components for mixed variables, the present chapter describes an important
difference between INDOQUAL and MCA. It has been shown that INDOQUAL has
a greater discriminatory capability than MCA has. In addition, it has been
explained why INDOQUAL tends to yield solutions in which the objects are
more clearly clustered, per component, than in MCA solutions. This
interpretation of INDOQUAL suggests comparing INDOQUAL with discriminant
analysis techniques as well as cluster techniques for qualitative variables.
As far as the latter is concerned, comparison with the newly developed
GROUPALS technique (Van Buuren & Heiser, 1989) which combines K-means
clustering procedures with optimal scaling of qualitative variables is of
interest. It should be noted, however, that INDOQUAL has not been developed
for purposes of discriminant or cluster analysis, but that the results
presented here are merely additional properties of the method that attempts
to combine the objectives of optimal representation of the objects (as MCA
does) and optimal representation of the qualitative variables (as
PCA of quantification matrices does).

In section 8.4 simple structure rotations have been proposed for PCAMIX
solutions. Apart from simple structure rotation, an often used rotation
technique in ordinary PCA is matching of the loadings to a given set of
loadings. A procedure for rotating the MCA object coordinates such that the
loadings optimally resemble a given set of loadings has recently been
developed, and the program for it is presently being written. This offers new
possibilities for comparing INDOQUAL and MCA solutions, because one may now
compare the INDOQUAL solution to the rotation of the MCA solution the loadings
of which optimally resemble those of the INDOQUAL solution. Furthermore, this
matching procedure can be used to choose MCA solutions that optimally
resemble an a priori given set of loadings, which is based on theory or on

earlier results, for instance.

94



9. A COMPUTATIONAL SHORT-CUT FOR INDOMIX AND SOME
PROPERTIES OF THE INDOMIX SOLUTION

9.1. Introduction

In the chapters 5, 6, 7, and 8 INDOQUAL and INDOMIX have been discussed.
Both are based on the application of INDORT to a set of quantification
matrices, Pj=JGij_lGj'J for qualitative variables, and Qj=n'1z]-z]~’ for
quantitative variables, respectively, j = 1,...,m. In the present chapter it
will be described how the solutions of these methods can be obtained. In
addition, some particular properties of the solutions will be discussed.

An algorithm for INDORT, that is, for minimizing

m
(X Wy Wm)= L | S - XWX | (1)
j=1
over X, subject to X'X = I,., has been given by Kroonenberg (1983, p.118). Ten
Berge, Knol and Kiers (1988) have suggested an alternative algorithm for which
monotone convergence is guaranteed if the matrices S; are positive
semi—definite (p.s.d.). Both algorithms are based on an iterative procedure in
which an update for X is computed from the previous X and the set of S
matrices. When these algorithms are used for INDORT on a set of
quantification matrices for qualitative variables one is often faced with
severe computational problems. That is, these algorithms are to be applied to
a set of m matrices of order m xn. Clearly, computation time increases
rapidly as the sizes of the matrices increase. As a consequence, analyzing a
set of qualitative variables measured on a large number of objects poses
immense computational problems, both in terms of required memory and in
terms of computation times.

Multiple Correspondence Analysis (MCA) has no such problems in handling
very large numbers of objects. This is a consequence of the fact that the
information that is essentially used in the computations is contained
completely in the Burt-matrix, that is, the supermatrix containing the
contingency tables for all pairs of variables, including the diagonal matrices

of marginal frequencies. The number of objects in no way affects the size of
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the Burt-matrix. Hence having a large number of objects in MCA does not give
rise to computational problems.

Kiers (1989a) has shown that, as in MCA, the solution of INDOQUAL
depends on the elements of the Burt-matrix only. This has been shown by means
of describing the algorithm given by Ten Berge et al. (1988) completely in
terms of elements of the Burt-matrix. In addition, he has shown that for
determining the INDOMIX solution, again, only aggregate information is used
during the computations of the solution. In this way, all computational
problems for INDOQUAL or INDOMIX due to large sample sizes are resolved.
The derivations and results from Kiers (1989a) are repeated here.

The new computational procedure is based on some results that are
interesting in itself, because they can be used for deriving some properties
of the solutions of INDOQUAL and INDOMIX. For instance, based on a procedure
for weighting the objects that is developed here, the “distributional
equivalence property” which is a well-known property of Correspondence
Analysis, can be shown to hold for INDOQUAL as well. It will also be shown how
missing data can be handled, again by applying weights to the objects. First,
however, it will be shown that the Ten Berge et al. (1988) algorithm for
INDORT applied to p.s.d. quantification matrices uses aggregate information
only.

9.2. The Ten Berge, Knol, & Kiers algorithm for INDORT applied to
quantification matrices

In the present section, the algorithm proposed by Ten Berge et al. (1988)
for INDORT on p.s.d. matrices will be elaborz;,ted for the case where this
algorithm is applied to quantification matrices S;. In chapters 5 and 7,
particular choices of these quantification matrices have been made. These
quantification matrices (as well as most others described in chapter 3) can be
decomposed as S;=U;U;. For instance, in the case of the quantification
matrices chosen in chapters 5 and 7, S; =JG]-Dj"IGj’J for qualitative
variables, and Sj=n_1zjzj' for quantitative variables. Hence U; can be

chosen as U;=JG;D;” for qualitative variables, and Uj=n""z; for

3
quantitative variables. In the present section, an algorithm will be described
for INDORT applied to any set of p.s.d. quantification matrices. In the next

section, the implications of the particular choices for the quantification
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matrices made in chapters 5 and 7 will be studied.
The algorithm proposed by Ten Berge et al. (1988) can be described as
follows. Let X" denote an update of X, then this update is given by

X" = L38;XW ; (Wi X SiDiSiXWy) ™, (2)

where W; = Diag X'S;X, for j=1,...,m. Ten Berge et al. (1988) have shown
that repeatedly updating X according to (2) monotonically decreases the

function o, or, equivalently, monotonically increases the function

fX)= T (Diag X'S;X)?, (3)
j=1
and because ¢ is bounded from below (and f from above), this procedure must
converge to a stable function value. In (2) the term (LW X'S LS XW)) ™2 can
be computed as KA ™2K' from the eigendecomposition (T X' S DiSiXW)) =
KAK'.
The present elaboration of the Ten Berge et al. algorithm is based on
substituting S; = U;U;' for S; in the formula for the update X". This yields

X" = LU XW ; (T X UpUy LU XW)) ™42, (4)

Let Y; =U;'X, then (4) can be rewritten as

X" = TUY W (DY U TUY W) ™2 (5)

Z,
LetZ;=YW; Z= [Z ], and U = (U,]...|Uy), then UZ = T,U;Z,, and (5) can be

m
simplified as

X' = YU,Z;(TkZi U LUiZy) ™
= UZ(ZUUZ)™. (6)

It should be noted that Z; = Y ;W; = Y;(Diag X'S;X) = Y;(Diag X'U;U;'X) =
Y;(Diag Y;'Y;) depends on Y; only. As a consequence, the update X" of X
depends on the elements of U and Y only.

As has been explained above, the Ten Berge et al. (1988) algorithm for
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INDORT is based on iteratively updating X by X" described in (4). In order to
compute the next update X* of X" one uses again the expression in (4), but
now with every X at the right—hand side replaced by X"“. Expression (4) can

again be translated in an expression of the form of (6), when one defines

Y," Z,"
Y =Ux Y= |1 |, Z" =Y, (Diag ¥;"Y;"), and Z"=|{ |. Then the
Ymu Zm’u
expression for X** is given by
X = vz (Z"vuz) ™ (7)

Clearly, the update X** for X* depends on U and Z“ only. The latter
itself depends on Y only. As a consequence, in order to compute X** one needs
to have Y* and U only. Obviously, Y* can be computed from X*. However,
when n is large this computation is very cumbersome. Instead, Y* is found

directly from Z and U, as follows. Premultiplying (6) by U’ yields

Y'=UX" = UUZ(Z0UZ) ™ (8)

From (8) it can be seen that Y* can be computed by means of Z (which depends
onY only), and U. Matrix Z itself is given by the supermatrix containing
Z;=Y;(Diag Y;Y;), j=1,...,m. In this expression Y; depends on U; and X
only. Hence X** can be computed from X and U without, intermediately,
computing X*,

It follows from the above that the Ten Berge et al. algorithm for
updating X can be modified such that it updates X implicitly in every
iteration, while it only computes an update for Y explicitly. The only
computations in which X is actually involved are the computation of Y from U
and X at the start of the iterative procedure, and the computation of the
solution for X from the final update of Y, after convergence of the iterative
procedure. During the iterations computations are based on U'U and Z only,
while the matrix Z itself depends entirely on Y. Especially when the number of
elements of U'U is small compared to m'n,z, the present procedure can gain a lot
in computation time and memory space needed.

Ten Berge et al. (1988) have proven the monotone convergence of their
algorithm by proving that f(X*) > f(X), f(X"") > f(X"), etc. In the procedure

sketched above, X" is not explicitly computed. Nevertheless, the corresponding
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function value can be computed. Substituting S; = U;U;" for S; in (3) we have

f(X") = ¥ tr (Diag X"U,U;X")"

= ¥ tr (Diag Y;"Y,")? = g(Y"). (9)

Because the algorithm has not been changed essentially by our procedure, it
follows from f(X“) > f(X), f(X"*) > f(X") that g(Y") > g(¥), g(¥™") > g(¥'"),
etc. That is, updating Y by means of (8) increases g(Y) monotonically.

The algorithm proposed here can be summarized as follows.
Initialization:

Step 1. Choose a starting configuration X° for X.

Step 2. Compute on = Uj’Xu, j=1,...,m.
Iterations:

Step 3. Compute Zji = Y]-i(Diag in’in), j=1,..,m.

Step 4. Compute Y, = U;UZ' (Z'VU'UZ") ™, j=1,..,m.

. m . .
Step 5. Evaluate g(Y'*') = ¥ tr (Diag Y]_z+1,y]_z+1)2.
j=1

It g(Y“l)—g(Yi) > ¢, for some small value €, then go to Step 3, else go
to Step 6.

Determine the solution for the final W; and X:
Step 6. Compute Wji“ = (Diag Y]-HI’Y]-HI) j=1,..,m.
Step 7. Compute Z jiﬂ = in”(Diag YjHl'inH), j=1..m

Step 8. Compute X*** = Uz (2 0vz*") ™.

The bulk of the computations is done in the Steps 3, 4, and 5. These steps
only involve (parts of) the matrices U'U, of order L;r; x ;r;, and Y and Z,
both of order ¥ ;r; x r, where r; is the column-order of U;. When n is large,
the steps in which matrices of row- and/or column-orders n are involved are
problematic. Such steps are Steps 1 and 2, and Step 8. In the present
algorithm, these steps have to be done only once. In the original Ten Berge

et al. algorithm every iteration step involves multiplication of matrices of
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row- and/or column—orders n. For this reason, the procedure proposed here is
much faster than the original procedure when n is large compared to ¥, ;.

Some details in the algorithm described above need further explanation.
The first step of choosing a starting configuration for X can be done on
several grounds. Carroll, Pruzansky and De Soete (1987) and more recently,
Carroll, De Soete and Pruzansky (1989), have compared the performance of the
INDSCAL algorithm when several different starting procedures are used. Their
choices for starting matrices for X might be used. However, then one still has
to compute Y’ (Step 2), which might be cumbersome if » is very large. It is
easier to omit Step 1, and replace Step 2 by choosing arbitrary matrices YJ-O,
but then a corresponding X° does not necessarily exist, and one cannot state
that g(Yl) > g(YO). After the first iteration, however, a column-wise
orthonormal X' that corresponds to Y can be defined as X'=
vz (2 Uz ™, From (XY 21(XY), for i=1,2,.. it follows that
g(Ym)zg(Yi), for i=1,2,... That is, except for the first step monotone
convergence is guaranteed.

In the actual iteration Steps 3 and 4 one uses Y and Z. It should be
noted, however, that these need not be stored separately. That is, Y and Z can
use the same memory location alternatively, because they are never needed at
the same time.

This concludes the description of a modification of the Ten Berge et al.
algorithm for INDORT applied to quantification matrices, in general. It can
be seen that the algorithm essentially uses the elements of matrix U'U only.
In the next section, these sub-matrices will be described for the choices of

quantification matrices made in chapters 5 and 7.
9.3. Implications for INDOMIX

In chapters 5 and 7, the quantification matrices have been chosen as
S;= JGjDJ-_lG]-'J for qualitative variables, and S; = n'lz]-z]-' for quantitative
variables. Hence U; can be chosen as U;= JGij_V2 for qualitative variables,
and as U; =n'l/2zj for quantitative variables. In the present section, the
sub-matrices U;Up of UU will be described for these choices of
quantification matrices.

Three cases are to be distinguished. The first case is the case where

both variables are qualitative. Then U ;U is given by
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U;Uy = D; 3G JGyDy 2. (10)
By substituting J = (I—n'lll’) for J, and using G;'1 = D;1 we can rewrite (10)
as
UjUp =D; G} (I-n""11')Gy Dy ™2
=D; (GG~ n"'G;11'Gy)D; 2
=D, GG Dy —n”'D;/11'D, . (11)

The elements of U;'Uy can be expressed in terms of category frequencies and
bivariate category frequencies, as follows. Let f, be the frequency of
category g of variable j, f, the frequency of category h of variable k, and
let fg5 be the number of objects that belong to both category g of variable j,
and category h of variable k (called the bivariate frequency of these
categories). It should be noted that when j=k, then fg =f,=fp When
g=nh, and fg, =0, when g # h. From (11) it follows that the element (g,h) of
U;'Uy is given by

(05U gn = fo "2fn fgn — 07 f "2, (12)
Clearly, when j = k, (12) can be reduced to

[UjUklgn= - n_lfg'/’fhl”, when g # h, (13)

and

[UsUk)gg = f 9_V2f y_vzf 9= n’'f yvzf yv2
=1-n"f, (14)

When all variables are qualitative, all sub-matrices of U'U can be
computed as in (12), (13), and (14), hence, in that case, one can find the
elements of the complete matrix U'U in terms of the category frequencies and
the bivariate frequencies. The category frequencies are given on the diagonal
of the Burt-matrix (which contains all pairwise contingency tables), and the

bivariate frequencies are given in the off-diagonal blocks of the Burt—-matrix.
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That is, the computations for the solution of INDOQUAL use the elements of the
Burt-matrix only. The scores of the objects on the qualitative variables are
needed only when the final matrix X is to be computed. However, when the
number of objects is large, in general one is not interested in the complete
matrix X. A more interesting representation of the results might in that case
be the set of category centroids, as proposed by Kiers (1988), and also
mentioned in section 5.5. That is, in order to summarize the solution for the
objects, one might consider for each variable the means of the object
coordinates in each of the categories as given by Dj_lGj’X. Obviously, these
category centroids are computed easily from the final values in the matrices
Y;=D;"G/JX = D;4G;'X after convergence. Hence, if one is satisfied with
category centroids only, one does not need to perform Step 8 in the algorithm,
which is the only step in which the complete set of scores of objects on
variables is needed. An important implication of this is that the present
procedure makes possible the analysis of a Burt-matrix while one does not have
information on the level of each observation unit. It also follows
that the computational efficacy of the algorithm is in no way affected by the
number of observation units on which the Burt-matrix is based.

In case some or all variables are quantitative, the sub—matrices of U Uy
can be described as follows. If variable j is qualitative and variable k is

quantitative, then

U]"Uk = n_V2Dj—V26j'JZk = TII_V2Dj—V2GjIZk = n_l/szvzmjk, (15)

where my; is the vector with the means of z, in each of the categories of
variable j. '
If variables j and k are both quantitative, then

, -1,
UjUk=n ijk=”‘jk, (16)

where 7 is the product-moment correlation between variables j and k.

From the above it follows that the algorithm for INDOMIX involves again
aggregate information only, that is, only category frequencies, bivariate
frequencies, means of the quantitative variables in the categories of the
qualitative variables (given in m;;), and product-moment correlations between

quantitative variables. In the case where one has quantitative variables
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only, the algorithm is based entirely on the product-moment correlations
between the variables.

Apart from the fact that the algorithm for INDOMIX (and hence for the
special case INDOQUAL) uses aggregate information only, inspection of the
algorithm also yields some further information on the INDOMIX solution. That
is, from (6), or, equivalently, from Step 8 of the algorithm, it follows that,
after convergence of the algorithm, X =UB for some matrix B of order
L;7j x r. That is, the columns of X form an orthonormal basis of a sub-space
of the column-space of U. This implies that the maximum number of INDOMIX
components is equal to the rank of U. It should be noted, however, that for
this maximum number the X matrix does not necessarily provide a perfect
INDORT fit. It gives the maximally attainable INDORT-fit in that case. One
cannot generally increase the dimensionality of the INDOMIX solution until a
perfect INDORT-{fit is attained.

In the case of INDOQUAL the rank of U is equal to };m;—m. Hence the
maximal dimensionality for the INDOQUAL solution is ):jmj —m. It is well-known
that this is the maximal dimensionality for MCA as well. Moreover, as is
readily verified, MCA also finds an orthonormal basis for a subspace of the
column-space of U. Clearly, when r = };m;—m, the columns of the INDOQUAL
solution for X and those of the MCA solution for X both span the complete
column-space of U. It follows that the solution of INDOQUAL for X is equal
to the MCA solution for X, up to a possible rotation. Because the MCA
solution is determined up to a rotation only, the INDOQUAL solution for
r =Y, m;j—m is also an MCA solution. It is readily verified that, when the
MCA solution would be rotated such that it maximizes the quartimax criterion
(see section 8.4) it would yield the INDOQUAL solution itself.

In the case of mixed variables a similar equivalence can be shown to hold
for INDOMIX and PCAMIX. A more interesting case, however, seems to be the
one where only quantitative variables are involved. In that case U = n 727,
hence X = ZB for some m x r matrix B. That is, the components resulting from
INDOMIX applied to quantitative variables, given in X, are linear
combinations of Z, just as in ordinary PCA. Therefore, ordinary PCA and
INDOMIX applied to quantitative variables can be seen as methods that
both find linear combinations of the variables, but by optimizing different
criteria. From the fact that the components from INDOMIX are linear

combinations of the variables it follows that one can compute component scores
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for new (or “supplementary”) objects as well. This creates the possibility of
cross—validation of one’s results by applying the component—weights (in matrix
B) resulting from an INDOMIX analysis in one sample to the variables of
another sample, in order to study how the components are recovered in this
second sample. Such a cross—validation can be useful for several purposes. For
instance, one can use cross—validation to determine how sensitive an INDOMIX
solution is to the particular sample on which the solution is based, as is
done in section 10.4. Alternatively, one may want to study how strongly
components that have been determined at one occasion are recovered at

another occasion.
9.4. A further simplified algorithm for INDOQUAL

In section 5.4, it has been mentioned that INDOQUAL can be seen as the
method that applies INDORT to the matrices P; = G,D;Gy, j=1,..,m, and
eliminates the trivial axis, which is found consistently in this INDORT
analysis. In the present section, a computational procedure for INDORT applied
to the matrices P; = GjD]-'lGJ-' will be given, that appears to be a little more
simple than the one described for INDOQUAL above.

The INDORT analysis of the P; matrices could be performed along similar
lines as that of the S; matrices. That is, one sets U; = G;D; *2. Again the
algorithm from the previous section is used and the elements of the blocks of

U'U are computed as

WU gn = Fg fn “fon (17)

Clearly, when j = k, U;Uy can be written as

UjU; =D;G;G;D; ™ = Imj. (18)

The algorithm of the previous section depends on the U'U matrix whose
elements are given as in (17) and (18). These elements are the elements of the
Burt-matrix divided by the square roots of their associated marginal
frequencies. It would be even simpler when the algorithm used the elements of
the Burt-matrix itself. Therefore, in practice we use an algorithm which is a
slight modification of the algorithm sketched above. Let U; = G; = U,;D,",
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v -1~ - SV Miae VD - : ,
-y, ~ o
the U; matrices, and Z the vertical supermatrix of the Z; matrices. Then the

and UZ = UZ, with U the horizontal supermatrix of

iteration Steps 3, 4 and 5 are to be replaced by
Step 3': Compute Z ]-i =D;"Z ji = Dj_l/’in(Diag in’Y]-i)
= 7(Diag ¥,'D,¥ ), j=1,..,m ;
Step 4': Compute ¥/ = D; Yoy "*! = D,y Uz 20Uz ™
_ DU (FUIF) %, =1y ;
pitty _ 2

tr (Dlag ?ji+1'Dj?ji+l)
1

Step 5": Evaluate g'(

I3

J

Steps 2, 6, 7, and 8 are to be adapted analogously. The advantage of using the
present procedure over the original one is that in Step 4' one uses Uy only
which is exactly the Burt-matrix. It should be noted that the matrices D; are
the block-diagonal matrices of the Burt-matrix, that is, D; = (7]/(7]-. In this
way it suffices to work with the elements of the Burt-matrix U0 which are
integers, instead of the elements of U'U, which are reals and hence require
more memory space. This might enhance computer—efficiency, although the
advantage is off—set by the disadvantage of a more complicated computation of
the Z ; matrices, and of the function to be evaluated. Incidentally, it should
be noted that the matrix }7]- is the matrix with category centroids. This matrix
is now computed during the iterations, and it is available at once after

convergence.

9.5. Applying weights to the objects by requiring distributional

equivalence

In the previous sections it has been shown that the solution of INDOQUAL
is based entirely on the elements of the Burt-matrix. Obviously, two objects
with identical scores on all variables contribute in exactly the same way to
the Burt-matrix. Hence two such objects can be seen as one “type of object”

that occurs twice. Another way of putting this is that the object occurs with
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weight 2 in the sample. In general, one can consider p objects that have the
same scores on all variables as one object with weight p. The elements of the
Burt-matrix are then computed as follows. Let object i have weight p;, then
the element of [Bj]y, that is the bivariate frequency of category g of
variable j, and category h of variable k, is given by [Bjklgh = LiiccH)Pis
that is, the sum of weights of the objects that fall in category g of variable
J, and category h of variable k. Clearly, it makes no difference whether all
objects with the same scores on all variables are mentioned explicitly, with
unit weights, or all p objects with equal scores are replaced by one object
with weight p. This property is similar to the well-known property of
“distributional equivalence” in Correspondence Analysis (CA). That is, when
two rows (or columns) are proportional, CA on the matrix in which these rows
(or columns) are replaced by their sum yields the same solution (e.g.,
Greenacre, 1984, p.95). This in turn comes down to CA on the same data with
the two equal rows (or columns) replaced by one with a weight of 2. This
property can readily be generalized to MCA, which, just as INDOQUAL, depends
on the Burt-matrix only.

The property of distributional equivalence can be useful for INDOQUAL
when a (small) number of profiles is given that are each observed many times
in different frequencies. Because the program uses the Burt-matrix only and
allows for differential weighting of the objects, such data can be analyzed
without problem. In principle, the property of distributional equivalence also
holds for INDOMIX, but it is rather unlikely that two objects have identical
scores on quantitative variables. Using weights for the objects, however,
opens an interesting possibility for modifying INDOQUAL and INDOMIX. That is,
instead of using the weights only to summarize a number of equal profiles, one
can make any choice of weights for the objects, for instance in order to
down-weight the influence of certain objects that should not affect the
solution unduly, or, conversely, to give them a high weight in order to let
them dominate the solution to a certain extent. Another interesting
application seems to be a kind of “fuzzy coding”. That is, an object can be
seen to belong to more than one category of a variable, to different extents.
Such a fuzzy coding can be applied in INDOQUAL by replacing each object by a
number of “sub-objects” (with weights summing to one) which all belong to
different categories of the variable which is to be coded fuzzily (cf. Cazes,

1980, pp.391-392). The weights of the sub-objects indicate the extent to which
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the object belongs to each of the categories. One particular application of
such a fuzzy coding can be used in the case of missing data, as is explained
in the next section. It should be noted that this type of fuzzy coding differs
from the more usual definition of fuzzy coding (e.g., Van Rijckevorsel, 1987,
p.104 ff). Usually, fuzzy coding comes down to replacing indicator matrices by
so—called “pseudo-indicator matrices”, which contain in each row a number of
weights summing to one, indicating to what extent an object belongs to the
category. Obviously, this second type of fuzzy coding can be incorporated in
INDOMIX as well, because it simply pertains to a particular choice of

quantification matrices, based on pseudo-indicator matrices.
9.6. Missing data

In the descriptions of INDOQUAL and INDOMIX no procedure has been
described for handling missing data. Of course, one simple way of handling
missing data is deletion of all objects for which scores on one or more of the
variables are missing, often called “list-wise deletion”. However, in case the
number of variables is large, even with a small percentage of missing data,
this procedure of “list-wise deletion” might come down to eliminating most (or
even all) data. Therefore, alternative strategies are desirable.

For INDOQUAL, one particularly simple method for handling missing data is
based on the procedure for fuzzy coding described in section 9.5. Suppose an
object’s score is missing for variable j only. Then, not knowing to which
category this object belongs, one might consider this object to belong (to a
certain extent) to all the categories of the variable. That is, each object is
replaced by m; “sub-objects” with certain weights adding up to 1, that belong
each to a different category of variable j. The choice of weights to assign to
the sub-objects might be inspired by various reasonings. A very simple
procedure is to assign the weight mj_l to all sub-—objects. However, if a
category is rather infrequent, it is reasonable to assign a smaller weight to
the sub-object falling in this category. This might be achieved by assigning
the weight fo/n to the sub-object that falls in category g,
g =1,...,m;. Alternatively, one might have some information on the reason why
an observation is missing. For instance, an observation on an object might be
“missing” because the object in fact belongs partly to category g and partly

to category h of a variable, but certainly not to any of the other categories.
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Then introducing only two sub-objects (falling in categories g and A,
respectively) seems to be called for, for instance with weights of 1/2 each.
In all cases, the object scores for objects with missing data can be computed
as the means of the object scores for the sub—objects belonging to the object
concerned.

In INDOMIX the procedures described above can be used for handling
missing observations on qualitative variables. In order to use such procedures
for quantitative variables as well one is faced with the problem that, in
principle, the number of available scores is infinite. In order yet to align
the procedure for handling missing observations on quantitative variables as
much as possible to the one for handling missing observations on qualitative
variables, one might replace an object with a missing observation on a
quantitative variable by as many sub—objects as there are scores that have
been observed, with weights summing to one. It is readily verified that, when
the weights are proportional to those of the observed scores on this variable,
then the values of z;'z; and mj; are the same as those obtained by setting the
missing observation to this variable equal to zero. Hence one can simply
replace missing observations on quantitative variables by scores zero. Another
way of interpreting this is by considering a missing observation to be
replaced by the mean score on the variable concerned. This procedure
in fact unstandardizes the variable, and it seems useful to standardize the
variable again after this procedure.

Alternative procedures for handling missing data are possible as well
(see Gifi, 1981, pp. 68-70, and, Meulman, 1982, for MCA). One of these is to
replace the row in the indicator matrix for.a missing observation on a
qualitative variable by a row with zero elements only. Still another approach
is to create one or more extra categories for missing observations on
qualitative variables. Depending on the reason why an observation is missing
one may choose for any of these options. None of them involves considerable

adaptations of the computational procedures for INDOQUAL or INDOMIX.

9.7. Discussion

In the present chapter an algorithm has been described for the INDORT
analysis of a set of p.s.d. quantification matrices. The algorithm described

here is based on the algorithm proposed by Ten Berge et al. (1988). One of
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the main problems with their algorithm, and hence with the one described
here, is the fact that it is not guaranteed that the algorithm finds the
global maximum of function f. Apart from using rational starts, as proposed
by Carroll, Pruzansky, and De Soete (1987) and Carroll, De Soete, and
Pruzansky (1989), the only (partial) remedy to this problem seems to be using
several restarts.

The algorithm for INDORT applied to quantification matrices has been
elaborated for the special cases of INDOQUAL and INDOMIX, but can clearly
be useful for INDORT applied to many of the other quantification matrices
discussed in chapter 3 as well. Furthermore, as has been discussed in chapter
4, INDORT is not the only three~way method that has been proposed to use for
the analysis of a set of quantification matrices for qualitative variables.
Marchetti (1988) has proposed to use Tucker’s three-mode scaling (Tucker,
1972, see Kroonenberg, 1983, pp.52-53) and IDIOSCAL (Carroll & Chang, 1972)
for the analysis of a set of quantification matrices. In addition, one might
apply INDSCAL, that is, the unconstrained variant of INDORT, to such a set
of quantification matrices. All these methods use algorithms that have
computational problems when faced with m large n x n matrices. Currently,
algorithms are being developed for these methods that, just as the algorithm
described in the present chapter, need category frequencies and bivariate
frequencies only.

An interesting implication of the fact that the INDOQUAL solution is
based on the elements of the Burt-matrix only (that is, on category
frequencies and bivariate frequencies) is that different data sets with the
same Burt-matrix have essentially the same solution. That is, these solutions
have the same W; matrices, and the same category centroids, given by D]-_IGJ-'X .
The only difference is to be found in the object coordinates. This reflects
the situation in ordinary PCA, where the PCA of two sets of variables with the
same correlation matrix yield the same loadings for the variables, although

the component scores may differ.
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